Next: About this document ...
Up: ASSIST: A Suite of
Previous: Future Research
-
Andrews, D. F. and Herzberg, A. M. (1985).
-
Data: A Collection of Problems From Many Fields for the
Student and Research Worker, Springer:Brln:NY.
-
Arendt, J., Mirors, D. S. and Waterhouse, J. M. (1989).
-
Biological rhythms in clinical practice, Wright, London.
-
Aronszajn, N. (1950).
-
Theory of reproducing kernels, Trans. Amer. Math. Soc. 68: 337-404.
-
Bates, D. M., Lindstrom, M. J., Wahba, G. and Yandell, B. S. (1987).
-
GCVPACK: Routines for generalized cross validation, CommStB
16: 263-297.
-
Craven, P. and Wahba, G. (1979).
-
Smoothing noisy data with spline functions, Numer. Math. 31: 377-403.
-
Dette, H., Munk, A. and Wagner, T. (1998).
-
Estimating the variance in nonparametric regression - what is a
reasonable choice?, Journal of the Royal Statistical Society B 60: 751-764.
-
Donoho, D. L. and Johnston, I. M. (1994).
-
Ideal spatial adaption by wavelet shrinkage, Biometrika 81: 425-456.
-
Earn, D. J. D., Rohani, P., Bolker, B. M. and Gernfell, B. T. (2000).
-
A simple model for complex dynamical transitions in epidemics, Science 287: 667-670.
-
Eubank, R. (1988).
-
Spline Smoothing and Nonparametric Regression, New York:
Dekker.
-
Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986).
-
Residual variance and residual pattern in nonlinear regression, Biometrika 73: 625-633.
-
Green, P. J. and Silverman, B. W. (1994).
-
Nonparametric Regression and Generalized Linear Models: A
Roughness Penalty Approach, London: Chapman and Hall.
-
Grizzle, J. E. and Allen, D. M. (1969).
-
Analysis of growth and dose response curves, Biometrics 25: 357-381.
-
Gu, C. (1989).
-
RKPACK and its applications: Fitting smoothing spline models, Proceedings of the Statistical Computing Section, ASA: pp. 42-51.
-
Gu, C. (1990).
-
Adaptive spline smoothing in non-Gaussian regression models, Journal of the American Statistical Association 85: 801-807.
-
Gu, C. (1992).
-
Cross-validating non Gaussian data, Journal of Computational
and Graphical Statistics 2: 169-179.
-
Gu, C. (2002).
-
Smoothing Spline ANOVA Models, Springer-Verlag, New York.
-
Gu, C. and Wahba, G. (1991).
-
Minimizing GCV/GML scores with multiple smoothing parameters via
the Newton method, SIAM J. Sci. Stat. Comput. 12: 383-398.
-
Gu, C. and Wahba, G. (1993a).
-
Semiparametric ANOVA with tensor product thin plate spline, Journal of the Royal Statistical Society B 55: 353-368.
-
Gu, C. and Wahba, G. (1993b).
-
Smoothing spline ANOVA with component-wise Bayesian confidence
intervals, Journal of Computational and Graphical Statistics 2: 97-117.
-
Hall, P., Kay, J. W. and Titterington, D. M. (1990).
-
Asymptotically optimal difference-based estimation of variance in
nonparametric regression, Biometrika 77: 521-528.
-
Hall, P., Reimann, J. and Rice, J. (2001).
-
Nonparametric estimation of a periodic function, Biometrika
87: 545-557.
-
Hastie, T. and Tibshirani, R. (1990).
-
Generalized Additive Models, Chapman and Hall.
-
Hastie, T. and Tibshirani, R. (1993).
-
Varying coefficient model, Journal of the Royal Statistical
Society B 55: 757-796.
-
Heckman, N. and Ramsay, J. O. (2000).
-
Penalized regression with model-based penalties, Canadian
Journal of Statistics 28: 241-258.
-
Karcher, P. and Wang, Y. (2002).
-
Generalized nonparametric mixed effects models, Journal of
Computational and Graphical Statistics 10: 641-655.
-
Ke, C. and Wang, Y. (2001).
-
Semi-parametric nonlinear mixed effects models and their applications
(with discussion), Journal of the American Statistical Association 96: 1272-1298.
-
Ke, C. and Wang, Y. (2002).
-
Nonparametric nonlinear regression models, Technical Report # 385,
Department of Statistics and Applied Probability, University of California -
Santa Barbara.
-
Kitagawa, G. and Gersch, W. (1984).
-
A smoothness priors-state space modeling of time series with trend
and seasonality, Journal of the American Statistical Association 79: 378-389.
-
Klein, R., Klein, B. E. K., Moss, S. E., Davis, M. D. and DeMets, D. L.
(1988).
-
Glycosylated hemoglobin predicts the incidence and progression of
diabetic retinopathy, Journal of the American Medical Association 260: 2864-2871.
-
Kronfol, Z., Nair, M., Zhang, Q., Hill, E. and Brown, M. (1997).
-
Circadian immune measures in healthy volunteers: Relationship to
hypothalamic-pituitary-adrenal axis hormones and sympathetic
neurotransmitters, Psychosomatic Medicine 59: 42-50.
-
Lawton, W. H., Sylvestre, E. A. and Maggio, M. S. (1972).
-
Self-modeling nonlinear regression, Technometrics 13: 513-532.
-
Liu, A. and Wang, Y. (2004).
-
Hypothesis testing in smoothing spline models, Journal of
Statistical Computation and Simulation.
-
Liu, A., Meiring, W. and Wang, Y. (2004).
-
Testing generalized linear models using smoothing spline methods,
Statistica Sinica 14: 000-000.
-
Nychka, D. (1988).
-
Bayesian confidence intervals for smoothing splines, Journal of
the American Statistical Association 83: 1134-1143.
-
Nychka, D. and Ruppert, D. (1995).
-
A nonparametric transformation applied to both sides of a regression
model, Journal of the Royal Statistical Society B 57: 519-532.
-
Opsomer, J., Wang, Y. and Yang, Y. (2001).
-
Nonparametric regression with correlated errors, Statistical
Science 16: 134-153.
-
O'Sullivan, F. (1990).
-
Convergence characteristics of methods of regularization estimators
for nonlinear operator equations, SIAM Journal on Numerical Analysis
27: 1635-1649.
-
O'Sullivan, F. (1991).
-
Sensitivity analysis for regularized estimation in some system
identification problems, SIAM J. Sci. Stat. Comput. 12: 1266-1283.
-
O'Sullivan, F. and Wahba, G. (1985).
-
A cross validated Bayesian retrieval algorithm for non-linear
remote sensing, J. Comput. Phys. 59: 441-455.
-
Pinheiro, J. and Bates, D. M. (2000).
-
Mixed-effects Models in S and S-plus, Springer, New York.
-
Potvin, C., Lechowicz, M. J. and Tardif, S. (1990).
-
The statistical analysis of ecophysiological response curves obtained
from experiments involving repeated measures, Ecology 71: 1389-1400.
-
Ramsay, J. O. (1998).
-
Estimating smooth monotone functions, Journal of the Royal
Statistical Society B 60: 365-375.
-
Ramsay, J. O. and Li, X. (1998).
-
Curve registration, Journal of the Royal Statistical Society B
60: 351-363.
-
Ramsay, J. O. and Silverman, B. W. (1997).
-
Functional Data Analysis, Springer, New York.
-
Refinetti, R. (1993).
-
Laboratory instrumentation and computing: Comparison of six methods
for the determination of the period of circadian rhythms, Physiology and
Behavior 54: 869-875.
-
Rice, J. A. (1984).
-
Bandwidth choice for nonparametric regression, Annals of
Statistics 12: 1215-1230.
-
Roosen, C. and Hastie, T. (1994).
-
Automatic smoothing spline projection pursuit, Journal of
Computational and Graphical Statistics 3: 235-248.
-
Schaffer, W. and Kot, M. (1985).
-
Nearly one dimensional dynamics in an epidemic, Journal of
Theoretical Biology 112: 403-427.
-
Self, S. G. and Liang, K.-Y. (1987).
-
Asymptotic properties of maximum likelihood estimators and likelihood
ratio tests under nonstandard conditions, Journal of the American
Statistical Association 82: 605-610.
-
Simonoff, J. (1996).
-
Smoothing Methods in Statistics, Springer-Verlag, New York.
-
Venables, W. N. and Ripley, B. D. (1998).
-
Modern Applied Statistics With S-Plus, Springer, New York.
-
Wahba, G. (1978).
-
Improper priors, spline smoothing, and the problem of guarding
against model errors in regression, Journal of the Royal Statistical
Society B 40: 364-372.
-
Wahba, G. (1981).
-
Spline interpolation and smoothing on the sphere, SIAM J. Sci.
Stat. Comput. 2: 5-16.
-
Wahba, G. (1982).
-
Erratum: Spline interpolation and smoothing on the sphere, SIAM
J. Sci. Stat. Comput. 3: 385-386.
-
Wahba, G. (1983).
-
Bayesian confidence intervals for the cross-validated smoothing
spline, Journal of the Royal Statistical Society B 45: 133-150.
-
Wahba, G. (1987).
-
Three topics in ill posed inverse problems, Inverse and
Ill-Posed Problems, M. Engl and G. Groetsch, eds., Academic Press.
-
Wahba, G. (1990).
-
Spline Models for Observational Data, SIAM, Philadelphia.
CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 59.
-
Wahba, G. and Luo, Z. (1996).
-
Smoothing spline ANOVA fits for vary large, nearly regular data
sets, with application to historical global climate data, Festschrift in
Honor of Ted Rivlin, C. Micchelli, Ed.
-
Wahba, G. and Wang, Y. (1993).
-
Behavior near zero of the distribution of GCV smoothing parameter
estimates for splines, Statistics and Probability Letters 25: 105-111.
-
Wahba, G., Wang, Y., Gu, C., Klein, R. and Klein, B. (1995).
-
Smoothing spline ANOVA for exponential families, with application
to the Wisconsin Epidemiological Study of Diabetic Retinopathy,
Annals of Statistics 23: 1865-1895.
-
Wang, Y. (1997).
-
GRKPACK: fitting smoothing spline analysis of variance models to
data from exponential families, Communications in Statistics: Simulation
and Computation 26: 765-782.
-
Wang, Y. (1998a).
-
Mixed-effects smoothing spline ANOVA, Journal of the Royal
Statistical Society B 60: 159-174.
-
Wang, Y. (1998b).
-
Smoothing spline models with correlated random errors, Journal
of the American Statistical Association 93: 341-348.
-
Wang, Y. and Brown, M. B. (1996).
-
A flexible model for human circadian rhythms, Biometrics 52: 588-596.
-
Wang, Y. and Wahba, G. (1995).
-
Bootstrap confidence intervals for smoothing splines and their
comparison to Bayesian confidence intervals, J. Statist. Comput.
Simul. 51: 263-279.
-
Wang, Y. and Wahba, G. (1998).
-
Discussion of "Smoothing Spline Models for the Analysis of
Nested and Crossed Samples of Curves" by Brumback and Rice,
Journal of the American Statistical Association 93: 976-980.
-
Wang, Y., Guo, W. and Brown, M. B. (2000).
-
Spline smoothing for bivariate data with applications to association
between hormones, Statistica Sinica 10: 377-397.
-
Wang, Y., Wahba, G., Chappell, R. and Gu, C. (1995).
-
Simulation studies of smoothing parameter estimates and Bayesian
confidence intervals in Bernoulli SS ANOVA models, Communications
in Statistics: Simulation and Computation 24: 1037-1059.
-
Wang, Y., Wahba, G., Gu, C., Klein, R. and Klein, B. (1997).
-
Using smoothing spline ANOVA to examine the relation of risk
factors to the incidence and progression of diabetic retinopathy, Statistics in Medicine 16: 1357-1376.
-
Yorke, J. and London, W. (1973).
-
Recurrent outbreaks of measles, chickenpox and mumps, American
Journal of Epidemiology 98: 453-482.
Yuedong Wang
2004-05-19