
ASSIST: A Suite of S functions

Implementing Spline smoothing Techniques

Yuedong Wang∗

University of California, Santa Barbara, USA

and

Chunlei Ke

St. Jude Medical, Sylmar, USA

May 18, 2004

Abstract

We present a suite of user friendly S functions for fitting various smoothing spline models
including (a) non-parametric regression models for independent and correlated Gaussian data,
and for independent binomial, Poisson and Gamma data; (b) semi-parametric linear mixed-effects
models; (c) non-parametric nonlinear regression models; (d) semi-parametric nonlinear regression
models; and (e) semi-parametric nonlinear mixed-effects models. The general form of smoothing
splines based on reproducing kernel Hilbert spaces is used to model non-parametric functions.
Thus these S functions deal with many different situations in a unified fashion. Some well known
special cases are polynomial splines, periodic splines, spherical splines, thin-plate splines, l-splines,
generalized additive models, smoothing spline ANOVA models, projection pursuit models, multiple
index models, varying coefficient models, functional linear models, and self-modeling nonlinear
regression models. These non-parametric/semi-parametric linear/nonlinear fixed/mixed models
are widely used in practice to analyze data arising in many areas of investigation such as medicine,
epidemiology, pharmacokinetics, econometrics and social science. This manual describes technical
details behind these S functions and illustrate their applications using several examples.

1 Introduction

Smoothing spline models are widely used in practice as a tool to achieve flexibility. There has been
intensive research on its theoretical properties and applications. For references on non-parametric
regression using smoothing splines, see Eubank (1988), Wahba (1990), Hastie and Tibshirani (1990),
Green and Silverman (1994), Simonoff (1996), and Gu (2002).

As the popularity of building models using splines increases, there is an increasing need for com-
prehensive and user friendly software. Existing software include GCVPACK (Bates, Lindstrom, Wahba
and Yandell 1987) for fitting thin plate splines, RKPACK (Gu 1989) for fitting general smoothing spline
regression models as described in Wahba (1990), and GRKPACK (Wang 1997) for fitting generalized
smoothing spline regression models to data from exponential families. All three packages were writ-
ten in Fortran which is inconvenient to use. Some user friendly S (S-plus and R) functions have

∗This research was supported by NIH Grant R01 GM58533. The authors would like to express their deep appreciation

and gratitude to José C. Pinheiro and Douglas M. Bates for answering many technical questions.

1



lm

glm

smooth.spline

nls

lme

gam

nnr

nlme

slm

snr

ssr

snm

­
­
­
­
­Á

´
´́3

Q
QQs

J
J
J
J
Ĵ

XXXXXXXXz
»»»»:
XXXXz

XXXXXXXXz

»»»»»»»»:

»»»»»»»»:

XXXXXXXXz

-

-

HHHHHj

XXXXXz

³³³³³1

Figure 1: Functions in ASSIST (dashed boxes) and existing S-Plus functions (solid boxes). An arrow
represents an extension to a more general model. LM: linear models. GLM: generalized linear models.
NLS: nonlinear regression models. LME: linear mixed effects models. GAM: generalized additive
models. NNR: nonlinear nonparametric regression models. NLME: nonlinear mixed effects models.
SLM: semi-parametric linear mixed effects models. SSR: smoothing spline regression models. SNR:
semi-parametric nonlinear regression models. SNM: semi-parametric nonlinear mixed effects models.

been developed recently. For example, the S function smooth.spline fits cubic splines; FIELDS, a
suite of S-plus functions which can be downloaded from http://www.cgd.ucar.edu/stats/software.shtml,
fits cubic and thin plate splines; smooth.Lspline, a S-plus function which can be downloaded from
ftp://ego.psych.mcgill.ca/pub/ramsay/Lspline, fits L-splines; and gss, a suite of R functions which can
be downloaded from cran.r-project.org/src/contrib/PACKAGES.html, fits general smoothing spline re-
gression models to data from exponential families (Gu 2002).

In this document we describe a suite of S functions, ASSIST, with examples to show their usage.
The purposes of the ASSIST package are to (a) provide a S complement of the gss package for fitting
general smoothing spline non-parametric regression models to data from exponential families; (b)
develop functions for fitting Gaussian data with certain variance and/or covariance structures; (c)
develop functions for fitting more complicated models such as semi-parametric linear mixed-effects
models, non-parametric nonlinear regression models, semi-parametric nonlinear regression models,
and semi-parametric nonlinear mixed-effects models; and (d) provide inference tools for some simple
models. We adopt notations in Wahba (1990).

Figure 1 shows how the functions in ASSIST generalize existing S-Plus functions.

Basic knowledge of reproducing kernel Hilbert spaces and general smoothing spline models as
described in the first two chapters of Wahba (1990) is necessary to fully understand this article.
However, this is not required for using our functions to fit simple smoothing spline models.

We review the general smoothing spline regression model and describe the corresponding S func-
tion ssr in Section 2. We review the semi-parametric linear mixed-effects model and describe the
corresponding S function slm in Section 3. We review the non-parametric nonlinear regression model
and describe the corresponding S function nnr in Section 4. We review the semi-parametric nonlinear
regression model and describe the corresponding S function snr in Section 5. We review the semi-
parametric nonlinear mixed-effects model and describe the corresponding S function snm in Section
6. We illustrate how to use these functions with several real data sets in Section 7. Computational
concerns and tips are discussed in Section 8. Finally, in Section 9, we conclude with discussions on
further work.

2



2 Smoothing Spline Regression Models

In Section 2.1, we introduce the ssr function for general smoothing spline regression models with one
variable. In sections 2.2 to 2.4, we show how to use ssr to fit more complicated models such as partial
spline models, smoothing spline ANOVA (SS ANOVA) models for correlated observations and/or
observations with unequal variances, and SS ANOVA models for data from exponential families.

2.1 General Smoothing Spline Regression Models With One Variable

2.1.1 Model and Estimation

The general smoothing spline regression (SSR) model with one variable assumes that (Wahba 1990)

yi = Lif + εi, i = 1, · · · , n, (1)

where yi’s are univariate responses; f is an unknown function of an independent variable t with t
belonging to an arbitrary domain T and f ∈ H, a given Reproducing Kernel Hilbert Space (RKHS);

L′
is are bounded linear functionals on H; and εi’s are random errors with εi

iid
∼ N(0, σ2). Note that t

may be a vector. For most applications, Li’s are evaluation functionals at design points: Lif = f(ti).

Suppose that

H = H0 ⊕H1, (2)

where H0 is a finite dimensional space with basis functions φ1(t), · · · , φM (t), and H1 is a RKHS with
reproducing kernel R1(s, t). See Aronszajn (1950) and Wahba (1990) for more information about
RKHS. The estimate of f , f̂λ, is the minimizer of the following penalized least squares

1

n

n∑

i=1

(yi − Lif)2 + λ||P1f ||
2, (3)

where P1 is the orthogonal projection operator of f onto H1 in H, and λ is a smoothing parameter
controlling the balance between goodness-of-fit measured by the least squares and departure from the
null space H0 measured by ||P1f ||

2. Note that functions in H0 are not penalized.

Let y = (y1, · · · , yn)T . Define ξi(t) = Li(·)R1(t, ·), Tn×M = {Liφv}
n
i=1

M
v=1 and Σ = {< ξi, ξj >}n

i,j=1.
Given λ, the solution to (3) has the form (Wahba, 1990)

f̂λ(t) =
M∑

i=1

diφi(t) +
n∑

j=1

cjξj(t), (4)

where the coefficients d = (d1, · · · , dM )T and c = (c1, · · · , cn)T are solutions to

(Σ + nλI)c + Td = y,

T T c = 0. (5)

The Fortran subroutine dsidr.r in RKPACK was developed to solve equations (5) (Gu 1989). In our
ASSIST package, the S function dsidr serves as an intermediate interface between S and the driver
dsidr.r.

3



2.1.2 The ssr Function

The S function for fitting a SSR model is ssr. A typical call is

ssr(formula, rk, data)

Only the first two arguments, formula and rk, are required. Together they describe the response
variable and the model space. formula, a statistical formula as in lm, lists the response variable on
the left hand side and the bases φ1(t), · · · , φM (t) of H0 on the right hand side of an operator ~. rk is an
expression that specifies the reproducing kernel R1. Expressions of rk for commonly used reproducing
kernels are available in our library. These expressions will be discussed in the following sections. Users
can easily add their own expressions of reproducing kernels.

The optional argument data specifies the data frame. Other optional arguments will be discussed
in the following sections.

ssr returns an object of class “ssr” with many variables representing the fit to the specified
smoothing spline model. Detailed information about this object can be found in the help file on
ssr.object.

2.1.3 Some Special Spline Models

Example 1. Polynomial Spline. For the polynomial spline of order m on T = [a, b], the model space
is

H = Wm([a, b]) = {f : f, f ′, · · · , f (m−1)absolutely continuous,

∫ b

a
(f (m))2dt < ∞}. (6)

Let T = [0, 1]. Define an inner product on Wm([0, 1]) as

(f, g) =
m−1∑

i=0

∫ 1

0
(f (i)dt)

∫ 1

0
(g(i)dt) +

∫ 1

0
f (m)g(m)dt.

Then we have

H0 = span{k0(t), k1(t), · · · , km−1(t)},

R1(s, t) = km(s)km(t) + (−1)m−1k2m(s − t),

||P1f ||
2 =

∫ 1

0
(f (m))2dt, (7)

where kr(t) = Br(t)/r! and Br’s are Bernoulli polynomials (Craven and Wahba 1979).

Let T = [a, b]. Define inner product on Wm([a, b]) as

(f, g) =
m−1∑

i=0

f (i)(a)g(i)(a) +

∫ b

a
f (m)g(m)dt.

Then (Wahba 1990)

H0 = span{1, (t − a), · · · , (t − a)m−1},

R1(s, t) =

∫ b

a

(s − u)m−1
+

(m − 1)!

(t − u)m−1
+

(m − 1)!
du. (8)

4



Table 1 lists statements inside ssr for four simple polynomial splines. We assume variables k1,
k2 and k3 have been calculated based on Bernoulli polynomials. All expressions of the reproducing
kernels in this table are available in our library. Note that the domain under construction (7) is
restricted to [0, 1] while the domain under construction (8) is an arbitrary interval [a, b]. Thus one
needs to transform a variable into [0, 1] before using rk functions in the third column. The rk functions
in the fourth column assume the domain [0, T ] for any fixed T > 0. One can calculate the reproducing
kernel on [a, b] by a translation, for example cubic2(t − a).

Table 1: Statements for fitting simple polynomial splines.

m splines under construction (7) under construction (8)

1 linear y~1, rk=linear(t) y~1, rk=linear2(t)

2 cubic y~k1, rk=cubic(t) y~t, rk=cubic2(t)

3 quintic y~k1+k2, rk=quintic(t) y~t+t**2, rk=quintic2(t)

4 septic y~k1+k2+k3, rk=septic(t) y~t+t**2+t**3, rk=septic2(t)

Example 2. Stein Estimate. A James-Stein shrinkage estimate can be regarded as the solution
to (3) with T = {1, 2, · · · , K}, H = RK and Lif = f(ti) (Gu 2002).

For shrinkage toward a constant,

H0 = span{1},

R1(s, t) = I[s=t] − 1/K,

||P1f ||
2 =

K∑

i=1

[f(i) −
K∑

j=1

f(j)/K]2. (9)

For shrinkage toward zero,

H0 = empty set,

R1(s, t) = I[s=t],

||P1f ||
2 =

K∑

i=1

f2(i). (10)

The corresponding rk expressions for shrinkage toward a constant and shrinkage toward zero are
shrink1(t) and shrink0(t) respectively. We use these shrinkage methods to model discrete covari-
ates in smoothing spline ANOVA models as will be discussed later.

Example 3. Periodic Spline. For the m-th order periodic spline on T = [0, 1] (Wahba 1990),

H = Wm(per)

= {f : f (j) abs. cont., f (j)(0) = f (j)(1), j = 0, · · · , m − 1,

∫ 1

0
(f (m))2dt < ∞},

H0 = span{1},

R1(s, t) =
∞∑

v=1

2

(2πv)2m cos 2πv(s − t),

||P1f ||
2 =

∫ 1

0
(f (m))2dt.

5



The function periodic in our library calculates R1 evaluated at specified points. The order m is
specified by the argument order with default order=2. For example, one may fit a cubic periodic
spline (m = 2) by

ssr(y~1, rk=periodic(t))

Example 4. Thin plate spline (TPS) (Wahba 1990). For a TPS of order m on T = Rd with
2m − d > 0,

H = {f : Jd
m(f) < ∞},

H0 = {f : Jd
m(f) = 0},

||P1f || = Jd
m(f), (11)

where

Jd
m(f) =

∑

α1+···+αd=m

m!

α1! · · ·αd!

∫ ∞

−∞
· · ·

∫ ∞

−∞

(

∂mf

∂tα1

1 · · · ∂tαd

d

)2
∏

j

dtj .

A pseudo reproducing kernel (conditional positive definite rather than positive definite) for H1 is
R1(s, t) = E(|s − t|), where |s − t| is the Euclidean distance, and

E(u) =







(−1)d/2+1+m

22m−1πd/2(m − 1)!(m − d/2)!
|u|2m−dln|u|, d even,

Γ(d/2 − m)

22mπd/2(m − 1)!
|u|2m−d, d odd.

The function tp.psuedo in our library calculates this pseudo kernel. The argument order of this
function specifies m with default order=2. For example, for d = 2 and m = 2, one may fit the TSP
model by

ssr(y~t1+t2, rk=tp.pseudo(list(t1,t2)))

The true kernel discussed in Gu and Wahba (1993a) is calculated by the function tp. It takes
longer to compute the true kernel and is only necessary for calculating posterior variances.

Example 5. Spline on the sphere is an extension of both the periodic spline defined on the unit
circle and the TPS on R2. Let the domain be T = S, where S is the unit sphere. Any point t on S
can be represented as t = (θ, φ), where θ (0 ≤ θ ≤ 2π) is the longitude and φ (−π/2 ≤ φ ≤ π/2) is
the latitude. Define

J(f) =

∫

t∈S
(∆m/2f)2dt,

where ∆f is the surface Laplacian on the unit sphere

∆f =
1

cos2 φ
fθθ +

1

cos φ
(cos φfφ)φ.

The model space H = H0 ⊕H1, where H0 = span{1} and

H1 = {f ∈ L2(S) : J(f) < ∞}.

H is a RKHS with RK R(s, t) = 1 + R1(s, t), where

R1(s, t) =
∞∑

i=1

2i + 1

4π

1

[i(i + 1)]m
Li(cos γ(s, t))

6



is the rk of H1, γ(s, t) is the angle between s and t, and Li’s are the Legendre polynomials. ||P1f || =
J(f). R1 is in the form of an infinite series which is inconvenient to compute. Closed form expressions
are only available for m = 2 and m = 3. Wahba (1981) proposed replacing J by a topologically
equivalent norm Q under which closed form of rk’s can be derived. See Wahba (1981), Wahba (1982),
Wahba (1990) and Wahba and Luo (1996) for more details. The function sphere in our library
calculates R1 under the norm Q for 2 ≤ m ≤ 6. The argument order of this function specifies m with
default order=2. For example, for m = 3, one may fit a spline on the sphere by

ssr(y~t1+t2, rk=sphere(cbind(t1,t2),order=3))

where t1 and t2 are longitude and latitude respectively.

Example 6. L-spline. The penalty term, ||P1f ||, is usually used to penalize the roughness of
the function f . However, sometimes it is advantageous to use other forms of penalty. For example,
prior information may be incorporated or even estimated by a penalty to the departure of the non-
parametric function f from a specific parametric model (Wahba 1990, Heckman and Ramsay 2000).
Let L be a linear differential operator L = Dm +

∑m−1
j=0 ωjD

j , where Dj denotes the jth derivative
operator and the ω’s are continuous real-valued weight functions. The spline estimate with the penalty
||P1f ||

2 =
∫ b
a (Lf(t))2dt is called an L-spline. See Heckman and Ramsay (2000) and Gu (2002) for

more details about the L-spline. The lspline function in our library calculates reproducing kernels
for the following four L-spline models.

(a) Suppose that T = [0, 1]. If prior knowledge suggests that f is close to a linear combination of
sin 2πt and cos 2πt, one may use H = W2(per) ª {1}, and L = D2 + (2π)2. Then

H0 = span{sin 2πt, cos 2πt},

R1(s, t) =
∞∑

ν=2

2

(2π)4(1 − ν2)2
cos 2πν(s − t).

The statement for fitting such a model is

ssr(y~sin(2*pi*t)+cos(2*pi*t)-1, rk=lspline(t,type="sine0"))

If we want to include the constant in the model space, then H = W3(per), L = D[D2 + (2π)2],

H0 = span{1, sin 2πt, cos 2πt},

R1(s, t) =
∞∑

ν=2

2

(2π)6ν2(1 − ν2)2
cos 2πν(s − t).

The statement for fitting such a model is

ssr(y~sin(2*pi*t)+cos(2*pi*t), rk=lspline(t,type="sine1"))

(b) Suppose that T = [0, T ]. If prior knowledge suggests that f is close to a linear combination of 1
and exp(−t), one may use H = W2([0, T ]), and L = D2 + D. Then

H0 = span{1, exp(−t)},

R1(s, t) = min(s, t) + e−t + e−s − emin(s,t)−s − emin(s,t)−t −
e−(s+t)

2
+

e2 min(s,t)−s−t

2
. (12)

The statement for fitting such a model is

ssr(y~exp(-t), rk=lspline(t,type="exp"))

(c) Suppose that T = [0, T ]. If prior knowledge suggests that f is close to the logistic function
exp(t)/(1 + exp(t)), one may use H = W1([0, T ]), and L = D − 1

1+et I. Then

H0 = span{exp(t)/(1 + exp(t))},

7



R1(s, t) =
es+t

(1 + es)(1 + et)
[min(s, t) − 2e−min(s,t) −

1

2
e−2 min(s,t) +

5

2
].

The statement for fitting such a model is

ssr(y~I(exp(t)/(1+exp(t)))-1, rk=lspline(t,type="logit"))

(d) Suppose that T = [0, T ]. If prior knowledge suggests that f is close to a linear combination of 1,
t, sin 2πt and cos 2πt, one may use H = W4([0, T ]), and L = D4 + D2. Then

H0 = span{1, t, sin(t), cos(t)},

R1(s, t) =







− t3

6 + st2

2 + (t − s) + s cos(t) − sin(t) + t cos(s) − sin(s)
+ t

2 cos(t − s) − 5
4 sin(t − s) − 1

4 sin(s + t), t < s,

− s3

6 + s2t
2 + (s − t) + t cos(s) − sin(s) + s cos(t) − sin(t)

+ s
2 cos(s − t) − 5

4 sin(s − t) − 1
4 sin(s + t), s ≤ t.

The statement is

ssr(y~t+cos(t)+sin(t), rk=lspline(t,type="linSinCos"))

2.1.4 The Smoothing Parameter

The choice of the smoothing parameter λ is critical to the performance of a spline estimate. Several
data-adaptive methods have been successfully used in practice (Wahba 1990). The following three
methods, Generalized Cross Validation (GCV), Generalized Maximum Likelihood (GML) and Un-
biased Risk (UBR), were implemented in RKPACK, and are available in S functions dsidr and ssr.
Denote A(λ) as the hat matrix such that

(L1f̂λ, · · · , Lnf̂λ)T = A(λ)y.

The GCV, GML and UBR methods estimate λ as the minimizers of the following GCV function

GCV(λ) =

1

n
||(I − A(λ))y||2

[
1

n
tr(I − A(λ))]2

,

GML function

GML(λ) =
yT (I − A(λ))y

[det+((I − A(λ)))]1/(n−M)
,

where det+ represents the product of the nonzero eigenvalues, and UBR function

U(λ) =
1

n
||(I − A(λ))y||2 +

2σ2

n
trA(λ),

respectively.

The GCV method may lead to interpolation when the sample size is small (Wahba and Wang
1993). The GML method is very stable. For moderate sample sizes, the performance of the GCV
and GML methods are comparable. For large sample sizes, the GCV method performs better then
the GML method. In our S function ssr, an option spar is provided for specifying one of these
three methods. spar=‘‘v’’, spar=‘‘m’’ and spar=‘‘u’’ correspond to the GCV, GML and UBR
methods respectively with GCV as the default. For example, fitting a cubic spline with the GML
choice of the smoothing parameter can be accomplished by

8



ssr(y~t, rk=cubic(t), spar=‘‘m’’)

An estimate of σ2 is needed for the UBR method. It can be specified with the argument varht. For
example, the following statement uses UBR to choose the smoothing parameter with σ2 = 10

ssr(y~t, rk=cubic(t), spar=‘‘u’’, varht=10)

Several methods may be used to derive an estimate of σ2 (Rice 1984, Gasser, Sroka and Jennen-
Steinmetz 1986, Dette, Munk and Wagner 1998, Hall, Kay and Titterington 1990, Donoho and John-
ston 1994).

2.1.5 Inferences

Consider the following Bayesian model

yi = LiF + εi, i = 1, · · · , n,

with prior for F as

F (t) =
M∑

ν=1

dνφν(t) + τ1/2X(t), t ∈ T ,

where d = (d1, · · · , dM )T ∼ N(0, aI), a and τ are positive constants, and X(t) is a zero mean Gaussian
stochastic process independent of d with covariance EX(s)X(t) = R1(s, t). Wahba (1978) showed that
lima→∞ E(F (t)|y) = f̂λ(t) with λ = σ2/(nτ). Formulae for computing posterior means and variances
were provided in Gu and Wahba (1993b). Posterior variances can be used to construct confidence
intervals for f̂λ(t):

f̂λ(t) ± z1−α/2

√

Var(f̂λ(t)|y), (13)

where z1−α/2 is the 1 − α/2 quantile of a standard normal distribution (Wahba 1990). The intervals
defined in (13) are referred to as the Bayesian confidence intervals (Wahba 1983). These Bayesian
confidence intervals are not point-wise confidence intervals. Rather, they provide across-the-function
coverage (Nychka 1988, Wang and Wahba 1995).

Often one needs to test

H0 : f ∈ H0 against H1 : f /∈ H0.

This hypothesis is equivalent to P1f = 0 or λ = ∞. Three tests were considered in Wahba (1990):
locally most powerful (LMP), GCV and GML tests. Let

T = (Q1 Q2)

(

R
0

)

be the QR decomposition of T , and UDUT be the eigenvalue decomposition of QT
2 ΣQ2 with eigenvalues

λvn, v = 1, · · · , n − M . Let z = (z1, · · · , zn−M )T = UT QT
2 y. Then the test statistics for LMP, GML

and GCV tests are

tLMP approx =
n−M∑

v=1

λvnz2
v/

n−M∑

v=1

z2
v ,

tGCV =

∑n−M
v=1 (z2

v/(1 + γ̂λvn)2)
∑n−M

v=1 (1/(1 + γ̂λvn)2)
×

1
∑n−M

v=1 z2
v

,

9



and

tGML =

∑n−M
v=1 (z2

v/(1 + γ̂λvn)2)
∏n−M

v=1 (1 + γ̂λvn)−1/(n−M)
×

1
∑n−M

v=1 z2
v

,

where γ̂ = 1/nλ̂. It can be shown that under the corresponding Bayesian model, the LMP test is
the score test and the GML test is the likelihood ratio test. Furthermore, the GCV test is closely
related to the F-test based on the extra sum of squares principle (Liu and Wang 2004). Usually
the p-values cannot be calculated analytically because the null distributions under H0 are unknown.
Standard theory for likelihood ratio tests does not apply because the parameter is on the boundary
under the null hypothesis. The non-standard asymptotic theory developed by Self and Liang (1987)
does not apply either because of the lack of replicated observations. Monte Carlo method can be
used to approximate p-values. However, they are usually computational intensive since the smoothing
parameter needs to be estimated for each Monte Carlo sample. In the current version, through the
utility function anova, Monte Carlo p-values are calculated with fixed smoothing parameters. The
Monte Carlo sample size is specified by the option simu.size. tt anova also provides the approximate
p-values of the GML tests based on a mixture of two χ2 distributions (Self and Liang 1987) even though
they tend to be conservative. Methods developed in Liu and Wang (2004) and Liu, Meiring and Wang
(2004) will be implemented in the future.

An alternative approach to visually check above hypothesis is to plot the projection of f̂ onto
H0 together with its Bayesian confidence intervals. When H0 is true, most parts of the zero func-
tion should be inside these confidence intervals. See Section 7 for examples. Two utility functions,
predict.ssr and plot.bCI, are available to compute posterior means, standard deviations and plot
fits with Bayesian confidence intervals. See help files of predict.ssr and plot.bCI for more details.

2.2 Partial Spline Models

The linear partial spline model assumes that (Wahba 1990)

yi = β1x1i + · · · + βdxdi + f(ti) + εi, i = 1, · · · , n, (14)

where the first part is a linear model of covariates x1, · · · , xd, and f ∈ H as in (1). Note that an SS
ANOVA model discussed in the next section can also be used for f when t is multivariate. Partial
spline models provide a tool to model multiple covariates when the relationship is unknown for only
a few variables. Note that some xk’s may be functions of t. For example, x = (t− t0)

q
+ allows a jump

in the qth derivative at t0.

Let X be the design matrix of x1, · · · , xd: XT = {xji}
d
j=1

n

i=1
, and S = (X T ). If S is of full

column rank, the estimate of f has the same representation as in (4). Furthermore, coefficients
(β1, · · · , βd, d

T )T and c are solutions to equations (5) with T replaced by S.

The linear model for x1, · · · , xd in (14) can be easily specified by adding these covariates to the
right hand side of formula. For example, supposing d = 3 and a cubic spline for f , we can fit model
(14) by

ssr(y~x1+x2+x3+t, rk=cubic(t))

2.3 Smoothing Spline ANOVA Models

Consider model (1) with f being a function of multivariate variables t1, · · · , td. Each variable tk itself
could be a vector. Assume that tk ∈ Tk, where Hk is an arbitrary domain. Then f is a function of
t = (t1, · · · , td) ∈ T = T1 ⊗ · · · ⊗ Td.

10



Suppose that we want to use the RKHS H(k) = {1(k)} ⊕ H
(k)
1 to model the effect of variable tk.

Denote P k as the projection operator onto {1(k)} in H(k). Then

f = [
d∏

k=1

(P k + I − P k)]f

=
∑

B⊆{1,···,d}

[
∏

k∈B

(I − P k)
∏

k∈Bc

P kf ]

= µ +
d∑

k=1

fk(tk) +
∑

k<l

fkl(tk, tl) + · · · + f1,···,d(t1, · · · , td), (15)

where elements fk’s are main effects, fjk’s are two factor interactions, and so on.

(15) is just the simplest form of the so-called SS ANOVA decomposition. The classical ANOVA
models are special cases with all variables being discrete. In general, suppose that we want to use the

RKHS H(k) = H
(k)
0 ⊕H

(k)
1 = {φ

(k)
1 }⊕ · · ·⊕{φ

(k)
mk}⊕H

(k)
1 to model the effect of variable tk where φ

(k)
j ’s

are basis functions for the null space H
(k)
0 . Denote P k

j as the projection operator onto {φ
(k)
j } in H(k).

Then expansion of the following equation

f = [
d∏

k=1

(P k
1 + · · · + P k

mk
+ I −

mk∑

j=1

P k
j )]f (16)

provides the general form of SS ANOVA decomposition. (16) decomposes f in the tensor product
space H(1) ⊗ · · · ⊗ H(k) into orthogonal and interpretable components. Which decomposition to use
depends on prior knowledge and the purpose of a study. It is more precise to think of SS ANOVA
decompositions as a powerful technique rather than as some specific models. See Wahba (1990), Gu
and Wahba (1993a), Gu and Wahba (1993b), Wahba, Wang, Gu, Klein and Klein (1995), Wang,
Wahba, Chappell and Gu (1995), Wang, Wahba, Gu, Klein and Klein (1997), Wang (1998a), Wang
and Wahba (1998) and references there for more details. Similar to the classical ANOVA, usually a
model space is a subspace containing lower order components. After a model is chosen, we can regroup
and write the model space as

H = H0 ⊕
p
∑

k=1

Hk, (17)

where H0 = span{φ1(t), · · · , φM (t)} is a finite dimensional space containing functions which are not
going to be penalized, and Hk is a RKHS with reproducing kernel Rk(s, t). The estimate of f is the
minimizer of

1

n

n∑

i=1

(yi − Lif)2 + λ
p
∑

k=1

θ−1
k ||Pkf ||

2, (18)

where Pk is the orthogonal projection of f onto Hk in H. Let ξki(t) = P1Li(.)Rk(t, .) and Σk = {<
ξki, ξkj >}n

i,j=1. The solution to (18) is

f̂(t) =
M∑

i=1

diφi(t) +
n∑

j=1

cj(
p
∑

k=1

θkξkj(t)), (19)

11



where c and d are solutions to (5) with Σ replaced by
∑p

k=1 θkΣk. Smoothing parameters λ/θ1, · · · , λ/θp

can be estimated similarly using GCV, GML and UBR methods (Wahba 1990). The Fortran subrou-
tine dmudr.r in RKPACK was developed to solve equations (5) and estimate the smoothing parameters
for p ≥ 1. In our ASSIST package, the function dmudr serves as an intermediate interface between S
and the driver dmudr.r.

ssr can also be used to fit SS ANOVA models. Basis functions φ1, · · · , φM can be specified as
before using the formula argument. Reproducing kernels R1(s, t), · · · , Rp(s, t) can be specified using
the argument rk as a list of expressions.

Example 7 Consider d = 2, t1 ∈ T1 = {1, · · · , K} and t2 ∈ T2 = [0, 1]. Functional data are a
typical example of this case (Ramsay and Silverman 1997). Suppose that we want to model the t1
effect using a one-way ANOVA effect model with H(1) = RK = {1} ⊕ {g :

∑K
t1=1 g(t1) = 0}, and the

t2 effect using a linear spline H(2) = W1([0, 1]) = {1} ⊕ {g ∈ W1([0, 1]) :
∫ 1
0 g(t2)dt2 = 0}. Define two

projection operators

P 1
1 f =

K∑

t1=1

f(t1, t2)/K,

P 2
1 f =

∫ 1

0
f(t1, t2)dt2.

Then (15) leads to

f(t1, t2) = µ + s1(t1) + s2(t2) + ss12(t1, t2). (20)

We have

H0 = span{1},

R1((s1, s2), (t1, t2)) = I[s1=t1] − 1/K,

R2((s1, s2), (t1, t2)) = k1(s2)k1(t2) + k2(s2 − t2),

R3((s1, s2), (t1, t2)) = [I[s1=t1] − 1/K][(k1(s2)k1(t2) + k2(s2 − t2)].

Construction (7) of a polynomial spline is used. Construction (8) may also be used to derive a similar
SS ANOVA decomposition. SS ANOVA model (20) can be fitted by

ssr(y~1, rk=list(shrink1(t1),linear(t2),rk.prod(shrink1(t1),linear(t2))))

where rk.prod is a function in our library calculating the product of two reproducing kernels.

Suppose that instead of a linear spline, we want to model t2 effect using a cubic spline

H(2) = W2([0, 1]) = {1} ⊕ {k1} ⊕ {g ∈ W2([0, 1]) :

∫ 1

0
g(t2)dt2 =

∫ 1

0
g′(t2)dt2 = 0}.

Define an additional projection operator

P 2
2 f = [

∫ 1

0
(∂f/∂t2)dt2]k1.

Then (16) leads to

f = µ + s1(t1) + βk1(t2) + s2(t2) + sl12(t1, t2) + ss12(t1, t2).

12



We have

H0 = span{1, k1(t2)},

R1((s1, s2), (t1, t2)) = I[s1=t1] − 1/K,

R2((s1, s2), (t1, t2)) = k2(s2)k2(t2) − k4(s2 − t2),

R3((s1, s2), (t1, t2)) = (I[s1=t1] − 1/K)k1(s2)k1(t2),

R4((s1, s2), (t1, t2)) = (I[s1=t1] − 1/K)[k2(s2)k2(t2) − k4(s2 − t2)].

Since k1(t2) = t2 − .5, this SS ANOVA model can be fitted by

ssr(y~I(t2-.5), rk=list(shrink1(t1),cubic(t2),

rk.prod(shrink1(t1),kron(t2-.5)),

rk.prod(shrink1(t1),cubic(t2))))

where the function kron in our library calculates the reproducing kernel for the space span{k1(t2)}.

Example 8 Consider d = 2, t1 ∈ T1 = [0, 1] and t2 ∈ T2 = [0, 1], a case with two continuous
covariates. If we model both covariates using linear splines

H(1) = W1([0, 1]) = {1} ⊕ {g ∈ W1([0, 1]) :

∫ 1

0
g(t1)dt1 = 0},

H(2) = W1([0, 1]) = {1} ⊕ {g ∈ W1([0, 1]) :

∫ 1

0
g(t2)dt2 = 0},

then (15) leads to
f(t1, t2) = µ + s1(t1) + s2(t2) + ss12(t1, t2).

Thus

H0 = span{1},

R1((s1, s2), (t1, t2)) = k1(s1)k1(t1) + k2(s1 − t1),

R2((s1, s2), (t1, t2)) = k1(s2)k1(t2) + k2(s2 − t2),

R3((s1, s2), (t1, t2)) = [k1(s1)k1(t1) + k2(s1 − t1)][k1(s2)k1(t2) + k2(s2 − t2)].

This SS ANOVA model can be fitted by

ssr(y~1, rk=list(linear(t1),linear(t2),rk.prod(linear(t1),linear(t2))))

If we want to model both variables using cubic splines

H(1) = W2([0, 1]) = {1} ⊕ {k1} ⊕ {g ∈ W2([0, 1]) :

∫ 1

0
g(t1)dt1 =

∫ 1

0
g′(t1)dt1 = 0},

H(2) = W2([0, 1]) = {1} ⊕ {k1} ⊕ {g ∈ W2([0, 1]) :

∫ 1

0
g(t2)dt2 =

∫ 1

0
g′(t2)dt2 = 0},

then (16) leads to

f(t1, t2) = µ + αk1(t1) + βk1(t2) + s1(t1) + s2(t2) + ls12(t1, t2) + sl12(t1, t2) + ss12(t1, t2). (21)

We have

H0 = span{1, k1(t1), k1(t2)},

13



R1((s1, s2), (t1, t2)) = k2(s1)k2(t1) − k4(s1 − t1),

R2((s1, s2), (t1, t2)) = k2(s2)k2(t2) − k4(s2 − t2),

R3((s1, s2), (t1, t2)) = k1(s1)k1(t1)[k2(s2)k2(t2) − k4(s2 − t2)],

R4((s1, s2), (t1, t2)) = [k2(s1)k2(t1) − k4(s1 − t1)]k1(s2)k(t2),

R5((s1, s2), (t1, t2)) = [k2(s1)k2(t1) − k4(s1 − t1)][k2(s2)k2(t2) − k4(s2 − t2)]

SS ANOVA model (21) can be fitted by

ssr(y~I(t1-.5)+I(t2-.5), rk=list(cubic(t1),cubic(t2),

rk.prod(kron(t1-.5),cubic(t2)),

rk.prod(cubic(t1),kron(t2-.5)),

rk.prod(cubic(t1),cubic(t2))))

For the purpose of model building and inference, one may want to construct Bayesian confidence
intervals for combinations of components in the model space (17). Gu and Wahba (1993b) provided
formulae to calculate posterior covariances for any combination of components. Denote f0v(t) =
dvφ(t), v = 1, · · · , M as M components in the null space H0, and fk(t) =

∑n
i=1 ciθkξik(t) as the

component in space Hk, k = 1, · · · , p. Let δj , j = 1, · · · , (M + p) be a sequence of 0’s and 1’s.
The utility function predict calculates posterior means and standard deviations for the combination
∑M

i=1 δif0i +
∑p

k=1 δM+kfk. Multiple combinations can be computed simultaneously. For example,
after fitting the SS ANOVA model (21) and saving into an object, say ssrfit, then one may calculate
the posterior mean and standard deviations for the smooth-smooth interaction ss12 and the total
interaction ls12(t1, t2) + sl12(t1, t2) + ss12(t1, t2) by

predict(ssrfit,terms=c(0,0,0,0,0,0,0,1))

predict(ssrfit,terms=c(0,0,0,0,0,1,1,1))

These two statements can be combined into one

predict(ssrfit,terms=matrix(c(0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1),

ncol=2,byrow=T))

An object of class ”bCI” is returned from this predict function, and the generic function plot can
be used to plot these combinations with Bayesian confidence intervals. See help file of plot.bCI for
details. predict function can also be used to calculate predicted values at any given points.

2.4 Spline Smoothing with Correlated Random Errors and/or Unequal Weights

So far we have assumed that random errors are independent with equal variances. In this section, we
consider model (1) with model space for f given in (17), and ε = (ε1, · · · , εn)T ∼ N(0, σ2W−1). When
W is completely known, we transform the data into iid case and fit as in previous sections. In the
following we assume that W depends on a parsimonious set of parameters τ .

We estimate f as the minimizer of the following penalized weighted least squares

(y − f)T W (y − f) + nλ
p
∑

k=1

θ−1
k ||Pkf ||

2. (22)

Again, the solution has the form (19) (Wang 1998b).

Correlated random errors may have a profound effect on methods for selecting smoothing param-
eters such as GCV, GML and UBR (Wang 1998b). Extensions of GCV, GML and UBR methods
with correlated random errors were developed in Wang (1998b). It was found that the extended GML

14



method has the best overall performance. Therefore, we concentrate on the extended GML method
here. Fixing λ = 1, the extended GML method estimates smoothing parameters θ in (18) together
with the variance-covariance parameters τ as the minimizers of

GML(θ, τ ) =
yT W (I − A(θ))y

[det+(W (I − A(θ)))]1/(n−M)
. (23)

To compute the minimizers of (23), we use the connection between smoothing spline models and
linear mixed-effects models (LMM) (Wang 1998b, Opsomer, Wang and Yang 2001). Let Σk = ZkZ

T
k ,

where Zk is a n × mk matrix with mk = rank(Σk). Consider the following LMM

y = Td +
p
∑

k=1

Zkbk + ε, (24)

where bk’s are random effects, bk ∼ N(0, σ2θkImk
/n) with Imk

being the identity matrix of order mk,
and bk are mutually independent and are independent of ε. It is easy to show that the restricted
maximum likelihood (REML) estimate of the variance components θ and τ in model (24) are the
minimizers of (23). Gu and Wahba (1991) noticed this connection and indicated that RKPACK can be
used to fit LMMs (24) with independent random errors. Here the opposite is done: we use software for
LMMs to fit smoothing spline models with correlated random errors. We first calculate Zk through
Choleski decomposition using the function chol.new. Then we calculate the GML (REML) estimates
of θ and τ using the function lme in the nlme library (Pinheiro and Bates 2000). Finally we transform
the data and call dsidr.r in RKPACK to calculate c and d in (19) with the smoothing parameters fixed
at these GML estimates. All these steps are performed internally.

Two options in ssr can be used to specify the correlation and variance structures for Gaussian
data. The first option, correlation, specifies the correlation structure of random errors. It inputs
a corMatrix class as in nlme. Available correlation structures include corSymm, corAR1, corCAR1,

corARMA, corExp, corLin, corGaus, corSpher, corSpatial. See the document of nlme (Pin-
heiro and Bates 2000) for a complete list. New structures can be added through facilities provided in
nlme. The following statement fits a thin plate spline with an exponential correlation structure

ssr(y~t1+t2, rk=tp.pseudo(cbind(t1,t2)), corr=corExp(form=~t1+t2),

spar=‘‘m’’)

The second option, weights, specifies the variance structure for the variance function of the
random errors in the form of a varFunc class as in nlme. Available varFunc classes include varFixed,
varIdent, varPower, varExp and varComb. See Pinheiro and Bates (2000) for details. New varFunc

classes representing user-defined variance functions can be added. For example, the following statement
fits a cubic spline with fixed weights (assuming a vector of w has been created)

ssr(y~t, rk=cubic(t), weights=w)

2.5 Generalized Smoothing Spline Models

Suppose that data have the form (yi, ti), i = 1, · · · , n, where yi’s are independent observations and
ti = (t1i, · · · , tdi). The distribution of yi is from an exponential family with density function

g(yi; fi, φ) = exp{yih(fi) − b(fi)/a(φ) + c(yi, φ)}, (25)

15



where fi = f(ti), h(fi) is a monotone transformation of fi known as the canonical link, and φ is a
dispersion parameter. Assume that f ∈ H where H is given in (17). The penalized likelihood estimate
of f is the minimizer of

−
n∑

i=1

li(fi) +
nλ

2

p
∑

k=1

θ−1
k ||Pkf ||

2, (26)

where li is the log-likelihood of yi. Again, the solution to (26) has the form (19) (Wahba et al. 1995),
and c and d are solved by minimizing (26). Usually the coefficients cannot be solved directly. If
all li(fi)’s are strictly concave, the Newton-Raphson iterative procedure can be used to calculate c

and d for fixed smoothing parameters. The smoothing parameters λ/θ1, · · · , λ/θp can be estimated at
each iteration using GCV, GML and UBR methods (Gu 1990, Gu 1992, Wahba et al. 1995). It was
found that when the dispersion parameter is known, the UBR method works better than the GCV
and GML methods (Wang et al. 1995). For binary, binomial, Poisson and gamma data, this procedure
was implemented in GRKPACK (Wang 1997). In our ASSIST package, the functions gdsidr and gdmudr

serve as intermediate interface between S and several drivers in GRKPACK.

The argument family in ssr specifies the distribution of y as in glm. Families supported are
“binary”, “binomial”, “poisson”, “gamma” and “gaussian” for Bernoulli, binomial, Poisson, gamma
and Gaussian distributions respectively. The default is Gaussian.

Laplace approximations to the posterior mean and variance can be calculated by the predict

function (Wahba et al. 1995). Then Bayesian confidence intervals can be constructed.

For example, one may fit a cubic spline to binary data with the UBR choice of the smoothing
parameter and compute approximate posterior means and variances by

a <- ssr(y~t, rk=cubic(t), family=‘‘binary’’, spar=‘‘u’’, varht=1)

predict(a)

where varht specifies fixed variance (dispersion) parameter as 1 for the UBR function.

2.6 Other Options in ssr and Utility Functions

Additional arguments provided by ssr are subset, scale, limnla and control. subset selects a
subset of the data for fitting. scale, if T (true), scales all covariates in the rk argument into [0, 1].
It is recommended that scaling be done before fitting. limnla, a vector of length 1 or 2, sets the
searching limits for nλ on log10 scale when fitting a univariate smoothing spline model (2). One may
fix the smoothing parameter by setting the length of limnla to 1. For example, one may fit a cubic
spline with nλ = 0.01 by

ssr(y~t, rk=cubic(t), limnla=log10(0.01))

The control option specifies several control parameters used in RKPACK and GRKPACK. See ssr.control
for details.

Generic utility functions supporting ssr include summary, plot, deviance, residuals, and hat.ssr,
in addition to the anova and predict function discussed in previous sections. The summary function
provides the basic description of a ssr fit. plot produces diagnostic plots for a ssr object. hat.ssr

returns the hat matrix of a spline fit. Note that the full name hat.ssr should be used since the
name “hat” has been utilized for another purpose. See the help files in the package for more detailed
descriptions.

16



3 Semi-parametric Linear Mixed-Effects Models

3.1 Model and Estimation

Let f be a function of multivariate variables t1, · · · , td. Let t = (t1, · · · , td) and assume that t ∈ T =
T1 ⊗ · · · ⊗ Td. Suppose that we model f using an SS ANOVA decomposition. Specifically, we assume
f ∈ H with H given in (17).

A semi-parametric linear mixed-effects (SLM) model assumes that

y = f + Xβ + Zb + ε, (27)

where y = (y1, · · · , yn)T , f = (f(t1), · · · , f(tn))T , t1, · · · , tn are design points, X is the design matrix
for some fixed effects with parameters β, Z is the design matrix for the random effects b, b ∼
N(0, σ2D), ε are random errors which are independent of b and ε ∼ N(0, σ2Λ). The covariance
matrices D and Λ are assumed to depend on a parsimonious set of covariance parameters τ . Regarding
the fixed effects part f+Xβ as a partial spline, model (27) is essentially the same as the non-parametric
mixed-effects model introduced in Wang (1998a).

For model (27), the marginal distribution of y is y ∼ N(f+Xβ, σ2W−1) where W−1 = ZDZT +Λ.
Given τ and λ/θ1, · · · , λ/θp, we estimate fixed parameters f and β as the minimizers of the following
penalized weighted least squares

(y − f − Xβ)T W (y − f − Xβ) + nλ
p
∑

k=1

θ−1
k ||Pkf ||

2. (28)

Denote the estimates as f̂ and β̂. We estimate Zb as the posterior mean ZDZT W (y − f̂ − Xβ̂),
where f̂ = (f̂(t1), · · · , f̂(tn))T .

Again, the solution of f has the form (19). Similar to Section 2.4, we use connections between a
SLM and a LMM to estimate τ and λ/θ1, · · · , λ/θp. Consider the following LMM

y = Td +
p
∑

k=1

Zkbk + Xβ + Zb + ε = (T, X)

(

d

β

)

+ (Z1, · · · , Zp, Z)









b1
...

bp

b









+ ε, (29)

where Zk’s and bk’s are defined in (24), ε ∼ N(0, σ2Λ), and b1, · · · , bp, b and ε are mutually inde-
pendent. Then the GML estimates of τ and λ/θ1, · · · , λ/θp in (28) are the REML estimates of the
variance components in (29) (Wang 1998a, Opsomer et al. 2001). As in Section 2.4, we use lme to
calculate the GML (REML) estimates of τ and λ/θ1, · · · , λ/θp. Then we transform the data and call
dsidr.r to calculate c, d, and β with smoothing parameters fixed at the GML estimates. Formulae
for calculating posterior variances were provided in Wang (1998a). Thus Bayesian confidence intervals
can be constructed.

3.2 The slm Function

The S function for fitting a SLM is slm. A typical call is

slm(formula, rk, random, data)

17



The first three arguments are required. formula and rk serve the same purposes as in ssr. formula,
a two-sided formula separated by the operator ~, lists the response variable on the left side, and the
bases φ1(t), · · · , φM (t) of H0 and covariates for the fixed effects in X on the right side. rk specifies
the reproducing kernels of H1, · · · ,Hp. random specifies the random effects the same way as in nlme.
The syntax of random is in the form of a named list of formulae or some pdMat objects. See the help
file of lme for more details.

Other options include correlation, weights and control. They all have the same functions as
in ssr.

An object of slm class is returned. Generic functions summary, predict and intervals can be
applied to extract further information. The predict function returns predictions at specified points.
The intervals function returns the posterior means and variances of combinations of components in
f as an object of class ”bCI”. Then the generic function plot can be used to construct plots. See
help files for details.

As a simple example, consider repeated measures over time from multiple subjects. Suppose that
we want to fit the following model

yij = f(tij) + bi + εij , i = 1, · · · , m; j = 1, · · · , ni; tij ∈ [0, 1],

where yij is the response at time tij from subject i, f ∈ W2([0, 1]), bi is a random intercept for subject

i and bi
iid
∼ N(0, σ2

1), and εij ’s are random errors independent of bi’s. Suppose that random errors are
independent between subjects, but correlated within a subject with a Gaussian correlation structure.
Then we can fit such a model with

slm(y~t, rk=cubic(t), random=list(subject=~1),

corr=corGaus(form=~t|subject))

4 Non-Parametric Nonlinear Regression Models

4.1 Model and Estimation

In model (1) we have assumed that the function f is observed through linear operators Li’s plus
random errors. Sometimes the function is observed indirectly which involves nonlinear operators
(O’Sullivan and Wahba 1985, Wahba 1987, Wahba 1990, O’Sullivan 1990, O’Sullivan 1991).

We consider the following non-parametric nonlinear regression (NNR) model

yi = η(f ; ti) + εi, i = 1, · · · , n, (30)

where η is a known function of ti = (t1i, · · · , tdi) in an arbitrary domain T , f = (f1, · · · , fq) is a
vector of unknown non-parametric functions which act nonlinearly as parameters of the function η,
and ε = (ε1, · · · , εn)T are random errors distributed as N(0, σ2W−1). The functions fj ’s could have
the same or different domains. We denote the model space of fj as

Hj = Hj0 ⊕

pj∑

k=1

Hjk. (31)

Let y = (y1, · · · , yn)T and η = (η(f ; t1), · · · , η(f ; tn))T . We estimate f as the minimizer of the

18



following penalized weighted least squares

(y − η)T W (y − η) + nλ
q
∑

j=1

pj∑

k=1

θ−1
jk ||Pjkfj ||

2, (32)

where Pjk is the orthogonal projection operator of fj onto Hjk in Hj .

In the following we consider the special case when

η(f ; ti) = h(L1if1, · · · , Lqifq), (33)

where h is a known nonlinear function, Lji’s are linear operators. (33) holds for most applications and
Lji’s are usually the evaluational functionals. When (33) does not hold, using linearization method,
we can approximate η(f ; ti) by a linear combination of linear operators.

When (33) holds, the solutions to (32) have the form (19). Specifically,

f̂j(t) =

Mj∑

l=1

djlφjl(t) +
n∑

i=1

cji(

pj∑

k=1

θjkξkji(t), (34)

where φjl, l = 1, · · · , Mj are bases of Hj0, ξkji(t) = LjiRjk(·)(t, ·), and Rjk is the rk of Hjk. We
estimate coefficients dji’s and cjl’s using (32) with fj ’s being replaced by (34). Since h in (33) is
nonlinear, an iterative method has to be used to solve these coefficients. Two methods are used: the
Gauss-Newton and Newton-Raphson procedures. See Ke and Wang (2002) for more details.

4.2 The nnr Function

The S function for fitting a NNR model is nnr. A typical call is

nnr(formula, func, start, data)

The first three arguments are required. formula, a two-sided formula separated by the operator ~,
lists the response variable on the left side, and an expression for the function η on the right side.
func is a list of formulae specifying all components in f . Each formula in this list has the form
f ∼ list( ∼ φ1 + · · · + φM , rk). For example, suppose that f = (f1, f2), and both f1 and f2 are
modeled using cubic splines. Then

func=list(f1(t)~list(~t, cubic(t)), f2(t)~list(~t, cubic(t)))

or

func=list(f1(t)+f2(t)~list(~t, cubic(t)))

start, a vector or an expression, specifies the initial values for the iterative procedure.

Method for selecting smoothing parameters is specified by the argument spar. spar=‘‘v’’,
spar=‘‘m’’ and spar=‘‘u’’ correspond to GCV, GML and UBR methods respectively, with GCV
as the default. Other options include correlation, weights, control, and subset. They all have
the same functions as in ssr. The option method in the argument control specifies the iterative
method. method=‘‘GN’’ and method=‘‘NR’’ correspond the Gauss-Newton and Newton-Raphson
methods respectively, with the Newton-Rahson method as the default.

An object of nnr class is returned. Generic functions summary, predict and intervals can be
applied to extract further information. See help files for details.

As a simple example, consider the following common form of a non-parametric regression model

yi = f(ti) + εi, ti ∈ [0, 1], i = 1, · · · , n. (35)

19



Suppose that we want to restrict f as a positive function. We may use the exponential transfor-
mation f = exp(g) or square transformation f = g2 to enforce positivity. Then we can model the
unconstrained function g by a spline model.

For the purpose of illustration, we generate n = 100 samples from model (35) with f(t) =

exp(sin 2πt) and εi
iid
∼ N(0, .52). We fit f using the exponential transformation in nnrfit1 and square

transformation in nnrfit2. We use a cubic periodic spline to model g. Figure 2 shows the fits.

t <- seq(0,1, len=100)

y <- exp(sin(2*pi*t))+0.5*rnorm(100)

nnrfit1 <- nnr(y~exp(g(t)), func=g(u)~list(~1, periodic(u)),

start=log(abs(y)+0.001))

nnrfit2 <- nnr(y~g(t)**2, func=g(u)~list(~1, periodic(u)),

start=sqrt(abs(y)))

t

y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

o

o

oo

o

o

oo

o

o
o

o

ooo

o

o

oo

o

o

o
oo

o

o

oo

o

o

o

o

oo

o

o
o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o

o

o

o

o

oo
o

o

o

o

o

oo

o
oo

o

o

o

o

oo

o

o

o

o

o

o

oo
o

o

o

o

true function
fit1
fit2

Figure 2: Points are observations; Lines are the true and estimated functions.

See Section 7 for more interesting examples.

5 Semi-parametric Nonlinear Regression Models

When building regression models, often we have enough knowledge to model some features of the
mean response function parametrically, but only have vague knowledge about other features. Thus we
want to leave these vague features unspecified and model them non-parametrically. A partial spline is
an example where the mean function depends on both parameters and some non-parametric functions
linearly. In this section we consider more general semi-parametric nonlinear regression (SNR) models
where the mean function may depend on both parameters and non-parametric functions nonlinearly.

5.1 SNR Models for Non-grouped Data

We define a class of SNR models for non-grouped data as

yi = η(φ, f ; ti) + εi, i = 1, · · · , n, (36)

20



where yi’s are responses; ti = (t1i, · · · , tdi) is a covariate in a general domain T ; η is a known function of
ti which depends on a vector of parameters φ = (φ1, · · · , φr)

T and a vector of unknown non-parametric
function f = (f1, · · · , fq)

T ; and ε = (ε1, · · · , εn)T are random errors distributed as N(0, σ2W−1). fj ’s
are modeled using SS ANOVA models as represented in (31). We assume that W depends on a
parsimonious set of parameters τ .

For model (36), we denote y = (y1, · · · , yn)T and η(φ, f) = (η(φ, f ; t1), · · · , η(φ, f ; tn))T . Model
(36) can then be written in the vector form

y = η(φ, f) + ε. (37)

5.2 SNR Models for Grouped Data

Grouped data include repeated measures data, longitudinal data, functional data and multilevel data
as special cases. For such data, we define SNR models as

yij = η(φi, f ; tij) + εij , i = 1, · · · , m, j = 1, · · · , ni, (38)

where yij is the response of subject i at design point tij , tij = (t1ij , · · · , tdij) is a covariate in a general
domain T , η is a known function of tij which depends on a vector of parameter φi = (φi1, · · · , φir)

T and
a vector of unknown non-parametric function f = (f1, · · · , fq)

T ; and ε = (ε11, · · · , ε1n1
, · · · , εm1, · · · εmnm)

∼ N(0, σ2W−1). For grouped data, usually observations are correlated within a subject but are inde-
pendent between subjects. In this case W is in the form of block diagonal. Again, each function fj is
modeled using an SS ANOVA model (31). Again, assume that W depends on a parsimonious set of
parameters τ .

For model (38), we denote n =
∑m

i=1 ni, yi = (yi1, · · · , yini
)T , y = (yT

1 , · · · , yT
m)T , ηi(φi, f) =

(η(φi, f ; ti1), · · · , η(φi, f ; tini
))T , φ = (φT

1 , · · · , φT
m)T , and η(φ, f) = (η1(φ1, f)T , · · · , ηm(φm, f)T )T .

Then model (38) can be written in the same vector form as (37).

5.3 Estimation

Since both model (36) and (38) have the same vector form (37), we consider estimation of these two
models simultaneously.

We estimate φ and f as the minimizers of the following penalized weighted least squares

(y − η(φ, f))T W (y − η(φ, f)) + nλ
q
∑

j=1

pj∑

k=1

θ−1
jk ||Pjkfj ||

2. (39)

The following iterative procedure is used to solve (39).

Algorithm Estimate f , φ and τ iteratively using the following two steps:

(a) Given the current estimates of φ and τ , update f ;

(b) Given the current estimates of f , update φ and τ .

In step (a), if η is linear in f , then model (37) is a SSR model. Thus the solutions have the
form (19). After certain transformations, we can call ssr to update f . If η is nonlinear in f , then
model (37) is a NNR model. Thus the closed form of solutions do not exist. We can approximate the
solutions as in NNR models. After certain transformations, we can call nnr to update f .

In step (b), (37) is a regular parametric nonlinear regression model when f is fixed. Thus we can
update φ and τ using the S function gnls. We implemented the algorithm above by calling ssr/nnr
and gnls alternately.

21



Conditional on φ, one can construct Bayesian confidence intervals as before. Adjustments need
to be made to account for the loss of the degrees of freedom when φ is estimated. See Ke and Wang
(2002) for more detailed discussions.

5.4 The snr Function

The S function for fitting a SNR model is snr. A typical call is

snr(formula, func, params, start, data)

The first four arguments are required. Arguments formula and func are the same as in nnr. params
and start specify models for parameters φ and their initial values for the iterative procedure.

Method for selecting smoothing parameters is specified by the argument spar. spar=’’v’’,
spar=’’m’’ and spar=’’u’’ correspond to GCV, GML and UBR methods respectively, with GCV
as the default. Other options include correlation, weights, and control. They all have the same
function as in ssr.

An object of snr class is returned. Generic functions summary, predict and intervals can be
applied to extract further information. See help files for details.

Example 9. Projection Pursuit models assume that η(φ, f ; t) =
∑q

j=1 fj(φ
T
j t). They are also

known as the multiple index models. Note that our estimation procedure is similar to that used in
Roosen and Hastie (1994). For example, suppose that q = 2, d = r = 3, and both f1 and f2 are
modeled using TPS on R with m = 2. Instead of polynomial splines, we use TPS’s to avoid the
limitation on the domain. For identifiability, we need the side condition φ2

j1 + φ2
j2 + φ2

j3 = 1. We can
fit such a model by

snr(y~f1(a11*t1+a12*t2+sqrt(1-a11**2-a12**2)*t3)

+ f2(a21*t1+a22*t2+sqrt(1-a21**2-a22**2)*t3),

func=list(f1(z)+f2(z)~list(~z,rk=tp.pseudo(z)),

params=list(a11+a12+a21+a22~1),

start=c(a110,a120,a210,a220))

Example 10. Nonlinear partial splines assume that η(φ, f ; t) = f(t)+g(φ; t), where g is a known
function depends nonlinearly on parameters φ. For example, suppose that t = (t1, t2), f is a function
of t1 modeled using a periodic spline, and g(φ; t) = φ1 exp(φ2t2). we can fit such a model by

snr(y~f(t1)+a*exp(b*t2), func=list(f(z)~list(~1,rk=periodic(z)),

params=list(a+b~1), start=c(a0,b0))

The function g can also be input as an outside S function as in gnls.

Example 11. Monotone spline. Consider model (35) where f is assumed to be a strictly increasing
function. Nychka and Ruppert (1995) used the following transformation

f(t) = η(φ, g; t) = φ1 +

∫ t

0
exp(g(s))ds,

where g ∈ W2([0, 1]). We can fit such a model by

snr(y~a+h(g), func=list(g(z)~list(~z,rk=cubic(z)),

params=list(a~1), start=c(a0))

where h is an S function calculating the integral
∫ t
0 exp(g(s))ds.

For monotone f (either increasing or decreasing), Ramsay (1998) suggested the following trans-
formation

f(t) = η(φ, g; t) = φ1 + φ2

∫ t

0
exp(

∫ s

0
g(u)du)ds,

22



where g ∈ W2([0, 1]). We can fit such a model by

snr(y~a+b*h(g), func=list(g(z)~list(~z,rk=cubic(z))),

params=list(a~1,b~1), start=c(a0,b0))

where h is a S function calculating the integral
∫ t
0 exp(

∫ s
0 g(u)du)ds.

Example 12. Positive monotone spline. Consider model (35) where f is assumed to be a strictly
positive and increasing function. One may use the following transformation

f(t) = η(φ, g; t) = exp(φ1 +

∫ t

0
exp(g(s))ds),

where g ∈ W2([0, 1]). We can fit such a model by

snr(y~exp(a+h(g)), func=list(g(z)~list(~z,rk=cubic(z)),

params=list(a~1), start=c(a0))

where h is a S function calculating the integral
∫ t
0 exp(g(s))ds.

Example 13. Varying coefficient models. Suppose that t = (x, z). The varying coefficient models
in Hastie and Tibshirani (1993) assume that

η(φ, f ; t) = φ1 +
q
∑

j=1

fj(z)xj .

Suppose that q = 2, both f1 and f2 are univariate functions of a continuous variable z and are modeled
using cubic splines. We can fit such a model by

snr(y~a+f1(z)*x1+f2(z)*x2, func=list(f1(z)+f2(z)~list(~z,cubic(z))),

params=list(a~1), start=c(a0))

Example 14. Self-modeling nonlinear regression (SEMOR) models were first proposed by Law-
ton, Sylvestre and Maggio (1972) to fit repeated measures data. They assumed that there exists a
common curve f for all subjects and that a particular subject’s response curve is some parametric
transformation of the common curve. We consider a more general SEMOR model

yij = α(φi; tij) + δ(φi; tij)f(γ(φi; tij)) + εij , i = 1, · · · , m, j = 1, · · · , ni, (40)

where α, δ and γ are known functions of t with unknown parameters φi. Usually t is a continuous
variable such as time. f is a function of a univariate continuous variable. Depending on the range of
γ, polynomial splines or univariate TPS may be used to model f . Most often, a SEMOR model is in
the form of

yij = φi1 + exp(φi2)f((tij − φi3)/ exp(φi4)) + εij , i = 1, · · · , m, j = 1, · · · , ni. (41)

Model (41) is referred to as a shape invariant model (SIM). Suppose we model f with a TPS on R
with m = 2 and random errors are iid normal. Note that we used exponential transformation to force
the amplitude parameter and the scale parameter to be positive. It is clear that model (41) is not
identifiable without side conditions. We now illustrate two approaches to make it identifiable. The
first approach uses the following side conditions: φ11 = φ12 = φ13 = φ14 = 0. Correspondingly these
set-to-zero conditions free f from confounding with a vertical shift, a vertical stretch, a horizontal
shift and a horizontal stretch. Then model (41) can be fitted by

snr(y~a1+exp(a2)*f((t-a3)/exp(a4)),

func=list(f(z)~list(~z,tp.pseudo(z))),

params=list(a1+a2+a3+a4~subject-1),

start=c(a10,a20,a30,a40))

23



We may also impose side conditions on f . For example, we may remove the constant functions
from the model space of f to make it identifiable with φi1’s. We may use the constraint sup |f(t)| = 1
to make f identifiable with φi2’s. Under these alternative side conditions and φ13 = φ14 = 0, model
(41) can be fitted by

snr(y~a1+exp(a2)*f((t-a3)/exp(a4)),

func=list(f(z)~list(~z-1,tp.pseudo(z))),

params=list(a1+a2~subject,a3+a4~subject-1),

start=c(a10,a20,a30,a40), constraint=list(maxValue=1))

Note that the “constraint” option is not available in the current version.

6 Semi-parametric Nonlinear Mixed-Effects Models

6.1 Model and Estimation

Semi-parametric nonlinear mixed-effects (SNM) models extend current statistical nonlinear models for
grouped data in two directions: adding flexibility to a nonlinear mixed-effects model by allowing the
mean function to depend on some non-parametric functions, and providing ways to model covariance
structure and covariates effects in an SNR model. An SNM model assumes that

yij = η(φi, f ; tij) + εij , j = 1, · · · , ni, i = 1, · · · , m, (42)

φi = Aiβ + Bibi, bi
iid
∼ N(0, σ2D), (43)

where the first-stage model (42) is the same as a SNR model (38), and the second-stage model is
the same as one for a nonlinear mixed-effect model. Specifically, yij is the response of subject i at
design point tij , tij = (t1ij , · · · , tdij) are independent variables in a general domain T , η is a known
function of tij which depends on a vector of parameter φi = (φi1, · · · , φir)

T and a vector of unknown
non-parametric function f = (f1, · · · , fq)

T ; random errors ε = (ε11, · · · , ε1n1
, · · · , εm1, · · · , εmnm) ∼

N(0, σ2Λ); β is a p-vector of fixed effects, bi is k-vector of random effects associated with subject i;
Ai and Bi are design matrices of sizes r× p and r× k for the fixed and random effects respectively. It
is assumed that the random effects and random errors are mutually independent. Each function fj is
modeled using an SS ANOVA model (31).

Let n =
∑m

i=1 ni, yi = (yi1, · · · , yini
)T , y = (yT

1 , · · · , yT
m)T , φ = (φT

1 , · · · , φT
m)T , ηi(φi, f) =

(η(φi, f ; ti1), · · · , η(φi, f ; tini
))T , η(φ, f) = (ηT

1 (φ1, f), · · · , ηT
m(φm, f))T and b = (bT

1 , · · · , bT
m)T . The

SNM model (42) and (43) can then be written in a matrix form

y|b ∼ N(η(φ, f), σ2Λ),

φ = Aβ + Bb, b ∼ N(0, σ2D̃),
(44)

where A = (AT
1 , · · · , AT

m)T , B = diag(B1, · · · , Bm) and D̃ = diag(D, · · · , D). In the following we
assume that Λ and D depend on an unknown parameter vector τ .

For fixed τ and σ2, we estimate β, f , b, τ as the minimizers of the following double penalized
log-likelihood

(y − η(Aβ + Bb, f))T Λ−1(y − η(Aβ + Bb, f)) + bT D̃−1b + nλ
q
∑

j=1

pj∑

k=1

θ−1
jk ||Pjkfj ||

2. (45)

24



Denote β̃, f̃ and b̃ as solutions to (45). Let Z̃ = (∂η(Aβ + Bb, f)/∂bT )
b=

˜b
, and Ṽ = Λ + Z̃D̃Z̃T .

We estimate τ and σ2 as minimizers of the approximate profile log-likelihood

log |σ2Ṽ | + σ−2(y − η(Aβ̃ + Bb̃, f̃) + Z̃b̃)T Ṽ −1(y − η(Aβ̃ + Bb̃, f̃) + Z̃b̃). (46)

Since f may interact with β and b in a complicated way, we have to use iterative procedures to
solve (45) and (46). We proposed two procedures in Ke and Wang (2001) for the case when η is linear
in f . It is not difficult to extend these procedures to the general case. In the following we describe
the extension of Procedure 1 in Ke and Wang (2001).

Procedure 1: estimate f , β, b, τ and σ2 iteratively using the following three steps:

(a) given the current estimates of β, b and τ , update f by solving (45);

(b) given the current estimates of f and τ , update β and b by solving (45);

(c) given the current estimates of f , β and b, update τ and σ2 by solving (46).

Note that step (b) corresponds to the pseudo-data step and step (c) corresponds to part of the
LME step in Lindstrom and Bates (1990). Thus the nlme can be used to accomplish (b) and (c). In
step (a) (45) is reduced to (32) after certain transformations. Then depending on if η is linear in f , the
ssr or nnr function can be used to update f . We choose smoothing parameters using a data-adaptive
criterion such as GCV, GML or UBR at each iteration.

To minimize (45) we need to alternate between steps (a) and (b) until convergence. Our simulations
indicate that one iteration is usually enough. Figure 3 shows the flow chart of Procedure 1 if we
alternate (a) and (b) only once. Step (a) can be solved by ssr or nnr. It is easy to see that steps (b)
and (c) are equivalent to fitting a NLMM with f fixed at the current estimate using the same methods
proposed in Lindstrom and Bates (1990). Therefore these two steps can be combined and solved by S
program nlme (Pinheiro and Bates 2000). Figure 3 suggests an obvious iterative algorithm by calling
nnr and nlme alternately. It is not difficult to use other options in our implementation. For example,
we may alternate steps (a) and (b) several times before proceeding to step (c). In our studies these
approaches usually gave the same results. For details about the estimation methods and procedures,
see Ke and Wang (2001).

f0 β0 b0 τ 0 (σ2)0 - f1 β1 b1 τ 1 (σ2)1 - f2 β2 b2 τ 2 (σ2)2 - · · ·

a
︸︷︷︸

b b c c
︸ ︷︷ ︸

a
︸︷︷︸

b b c c
︸ ︷︷ ︸

ssr/nnr nlme ssr/nnr nlme

Figure 3: Flow chart of Procedure 1. The first row shows the order in which parameters are updated.
The second row indicates the corresponding step for each parameter. The third row indicates that
step (a) can be solved by ssr or nnr and steps (b) and (c) can be combined and solved by nlme.

Approximate Bayesian confidence intervals can be constructed for f (Ke and Wang 2001).

6.2 The snm Function

The S function for fitting a SNM model is snm. A typical call is

snm(formula, func, fixed, start, random, data)

25



The first 4 arguments are required. Arguments formula and func are the same as in nnr. Following
syntax in nlme, the fixed and random arguments specify the fixed and random effects models in the
second stage model (43). The option start specifies initial values for all parameters in the fixed
effects.

snm inherits most of the options in nlme. See documents of nlme and the help file of snm for
details. Generic functions summary, predict and intervals can be applied to extract further in-
formation. intervals provides approximate posterior means and variances which can be used to
construct Bayesian confidence intervals for the f . Derivatives of η with respect to random effects are
needed to compute these quantities (Ke and Wang 2001). In interval.snm, numerical derivatives are
to be used.

Example 15. Mixed-effects SIMs. In the SIM (41) for repeated measure data, it is more appro-
priate to consider parameters as random variables (Ke and Wang 2001):

yij = β1 + b1i + exp(b2i)f((tij − b3i)/ exp(b4i)) + εij , i = 1, · · · , m; j = 1, · · · , ni, (47)

where bi = (b1i, b2i, b3i, b4i)
T ∼ N(0, Σ) and Σ is an unstructured positive-definite matrix. Suppose

that we want to model f using a TPS on R with m = 2. Note that no identifiability condition is
necessary for f since E(b2i) = 0. We can fit model (47) with independent random errors by

snm(y~b1+exp(b2)*f((t-b3)/exp(b4)),

func=list(f(u)~list(u,tp.pseudo(u))),

fixed=list(b1~1), random=list(b1+b2+b3+b4~1), start=b10)

7 Vector Spline Models

In many applications two or more dependent variables are observed at several values of independent
variables such as at multiple time points. Often observations from different variables are contempo-
raneously correlated. Observations from the same variable may also be correlated. The statistical
problems are (i) to estimate functions that model their dependences on the independent variables and
(ii) to investigate relationships between these functions. Wang, Guo and Brown (2000) proved that
the joint estimates have smaller posterior variances than those of function-by-function estimates and
are therefore more efficient. In this section we show how to use ssr and nnr to fit functions jointly.

Consider the following model

yji = fj(tji) + εji, j = 1, · · · , J ; i = 1, · · · , nj , (48)

where the ith response of the jth variable yji is generated as the jth function fj evaluated at the
design point tji plus a random error εji. We assume that fj has the model space (31).

Denote tj = (tj1, · · · , tjnj
)T , f j = (fj(tj1), · · · , fj(tjnj

))T , yj = (yj1, · · · , yjnj
)T , εj = (εj1, · · · , εjnj

)T ,

f = (fT
1 , · · · , fT

J )T , y = (yT
1 , · · · , yT

J )T , and ε = (εT
1 , · · · , εT

J )T . Assume that ε ∼ N(0, σ2W−1), where
W depends on some parameters τ .

We estimate all functions fj ’s jointly as the minimizer of the following penalized weighted least
squares

(y − f)T W (y − f) + nλ
J∑

j=1

pj∑

k=1

θ−1
jk ||Pjkfj ||

2, (49)

26



where Pjk is the orthogonal projection operator of fj onto Hjk in Hj . We use the GML method to
estimate the variance-covariance parameters τ and the smoothing parameters θjk’s as the minimizers
of (23).

We now show how to trick ssr to fit model (48). For the simplicity of notations, we consider the
case of J = 2. Situations with J > 2 can be fitted similarly. Note that the domains of tji may be
different for different j. For most applications they are the same, which is assumed in the remaining
of this section. Denote the common domain as T . Rewrite fj(t) as f(j, t), which is now considered as
a function of both j and t variables on the tensor product domain {1, 2} ⊗ T . Then we can represent
the original functions as

f(j, t) = f1(t) × I[j=1] + f2(t) × I[j=2]. (50)

Let

Mj = Hj0 ⊕Hj1 ⊕ · · · ⊕ Hjpj
, j = 1, 2 (51)

be the model space for fj , where Hj0 = span{φj1(t), · · · , φjmj
}, and Hjk’s are RKHS’s with RK

Rjk(s, t) for k ≥ 1. Then it is easy to check that

f(j, t) ∈ H0 ⊕H1 ⊕ · · · ⊕ Hp1
⊕Hp1+1 ⊕ · · ·Hp1+p2

, (52)

where H0 = span{φ1(j, t), · · · , φm1
(j, t), φm1+1(j, t), · · · , φm1+m2

(j, t)}, φk(j, t) = φ1k(t) × I[j=1] for
1 ≤ k ≤ m1, and φk(j, t) = φ2k(t) × I[j=2] for m1 + 1 ≤ k ≤ m1 + m2. Hk are RKHS’s with RKs
Rk((l, s), (j, t)) = R1k(s, t))×I[l=1]×I[j=1] for 1 ≤ k ≤ p1 and Rk((l, s), (j, t)) = R2k(s, t))×I[l=2]×I[j=2]

for p1 + 1 ≤ k ≤ p1 + p2. The model space (52) is similar to that of a SS ANOVA model. Thus we
can use the function ssr to fit functions fj ’s jointly.

We may reparametrize f(j, t) as

f(j, t) = f1(t) + (f2(t) − f1(t)) × I[j=2] (53)

= (f1(t) + f2(t))/2 + (f1(t) − f2(t)) × (I[j=1] − I[j=2])/2. (54)

(53) and (54) are SS ANOVA decompositions of f(j, t) with the set-to-zero and sum-to-zero side
conditions respectively. This kind of ANOVA decomposition can be carried out for general J .

For (53), let g1(t) = f1(t) and g2(t) = f2(t)−f1(t). Let Mj in (51) be the model space of gj . Then

f(j, t) ∈ H0 ⊕H1 ⊕ · · · ⊕ Hp1
⊕Hp1+1 ⊕ · · ·Hp1+p2

, (55)

where H0 = span{φ1(j, t), · · · , φm1
(j, t), φm1+1(j, t), · · · , φm1+m2

(j, t)}, φk(j, t) = φ1k(t) for 1 ≤ k ≤
m1, and φk(j, t) = φ2k(t)×I[j=2] for m1+1 ≤ k ≤ m1+m2. Hk are RKHS’s with RKs Rk((l, s), (j, t)) =
R1k(s, t) for 1 ≤ k ≤ p1 and Rk((l, s), (j, t)) = R2k(s, t) × I[l=2] × I[j=2] for p1 + 1 ≤ k ≤ p1 + p2.

For (54), denote g1(t) = (f1(t) + f2(t))/2 and g2(t) = (f2(t) − f1(t))/2. Let Mj in (51) be the
model space of gj . Then

f(j, t) ∈ H0 ⊕H1 ⊕ · · · ⊕ Hp1
⊕Hp1+1 ⊕ · · ·Hp1+p2

, (56)

where H0 = span{φ1(j, t), · · · , φm1
(j, t), φm1+1(j, t), · · · , φm1+m2

(j, t)}, φk(j, t) = φ1k(t) for 1 ≤ k ≤
m1, and φk(j, t) = φ2k(t) × (I[j=1] − I[j=2]) for m1 + 1 ≤ k ≤ m1 + m2. Hk are RKHS’s with RKs

27



Rk((l, s), (j, t)) = R1k(s, t) for 1 ≤ k ≤ p1 and Rk((l, s), (j, t)) = R2k(s, t) × (I[l=1] − I[l=2]) × (I[j=1] −
I[j=2]) for p1 + 1 ≤ k ≤ p1 + p2.

Often we are interested in possible relationships, if any, between f1 and f2. For example, one
may want to check if they are equal or parallel. Let P be a probability measure on T . Consider the
following SS ANOVA decomposition

f(j, t) = µ + αj + g1(t) + g12(j, t), (57)

where

µ =
1

2

∫

T
(f1(t) + f2(t))dP (t),

αj =

∫

T
fj(t)dP (t) − µ, j = 1, 2,

g1(t) =
1

2
(f1(t) + f2(t)) − µ,

g12(j, t) = fj(t) − µ − αj − g1(t), k = 1, 2.

We have
∑2

j=1 αj =
∫ 1
0 g1(t)dt =

∑2
j=1 g12(j, t) =

∫ 1
0 g12(j, t)dt = 0. µ is the overall mean, αj and g1(t)

are the main effects and g12(j, t) is the interaction. (57), equivalent of (54), will make some hypotheses
more transparent. It is easy to check that the following hypotheses are equivalent:

H0 : f1(t) = f2(t) ⇐⇒ H0 : αj + g12(j, t) = 0,

H0 : f1(t) − f2(t) = constant ⇐⇒ H0 : g12(j, t) = 0,

H0 :

∫ 1

0
f1(t)dt =

∫ 1

0
f2(t)dt ⇐⇒ H0 : αj = 0,

H0 : f1(t) + f2(t) = constant ⇐⇒ H0 : g1(t) = 0.

Furthermore, if αj 6= 0 and g1(t) 6= 0,

H0 : af1(t) + bf2(t) = c, |a| + |b| > 0 ⇐⇒ H0 : g12(j, t) = βαjg1(t).

Therefore the hypothesis that f1 and f2 are equal is equivalent to the j effect αj + g12(j, t) = 0. The
hypothesis that f1 and f2 are parallel is equivalent to the hypothesis that the interaction g12 = 0.
The hypothesis that the integral of f1 equals to that of f2 is equivalent to the hypothesis that the
main effect αj = 0. The hypothesis that the summation of f1 and f2 is a constant is equivalent to the
hypothesis that the main effect g1 = 0. The hypothesis that there exists a linear relationship between
the functions f1 and f2 is equivalent to the hypothesis that the interaction is multiplicative. Thus, for
these simple hypotheses we can fit the SS ANOVA model (57) and perform tests on the corresponding
components.

For illustration, we generate a data set from the following model

y1i = sin(2πi/100) + ε1i,

y2i = sin(2πi/100) + 2 × (i/100) + ε2i, i = 1, · · · , 100,

where random errors (ε1i, ε2i)’s follow bivariate normal with Var(ε1i) = .25, Var(ε2i) = 1 and Cor(ε1i, ε2i) =
.5. The variance-covariance structure can be specified with the combination of the weights and
correlation options. We will fit with an arbitrary pairwise variance-covariance structure.

28



Suppose we want to use cubic splines to model f1 and f2 in (50), f1 and f2 − f1 in (53), and
(f1 + f2)/2 and (f1 − f2)/2 in (54). Then m1 = m2 = 2, p1 = p2 = 1, φ11(t) = φ21(t) = 1,
φ12(t) = φ22(t) = t − .5, and R11 and R21 are the RK of a cubic spline. In the following we first fit
f1 and f2 using marginal data as bisp.fit1 and bisp.fit2 respectively. Then we fit jointly using
the formulation (50) as bisp.fit3 the formulation (53) as bisp.fit4, and the formulation (54), or
equivalently the formulation (57), as bisp.fit5.

> options(contrasts=rep("contr.treatment", 2))

> n <- 100

> s1 <- .5

> s2 <- 1

> r <- .5

> A <- diag(c(s1,s2))%*%matrix(c(sqrt(1-r**2),0,r,1),2,2)

> e <- NULL

> for (i in 1:n) e <- c(e,A%*%rnorm(2))

> t <- 1:n/n

> y1 <- sin(2*pi*t) + e[seq(1,2*n,by=2)]

> y2 <- sin(2*pi*t) + 2*t + e[seq(2,2*n,by=2)]

> bisp.dat <- data.frame(y=c(y1,y2),t=rep(t,2),id=rep(c(0,1),rep(n,2)),

pair=rep(1:n,2))

# fit separately

> bisp.fit1 <- ssr(y~I(t-.5),rk=cubic(t),spar="m",

data=bisp.dat[bisp.dat$id==0,])

> p.bisp.fit1 <- predict(bisp.fit1)

> bisp.fit2 <- ssr(y~I(t-.5),rk=cubic(t),spar="m",

data=bisp.dat[bisp.dat$id==1,])

> p.bisp.fit2 <- predict(bisp.fit2)

# fit jointly

> bisp.fit3 <- ssr(y~id*I(t-.5), rk=list(rk.prod(cubic(t),kron(id==0)),

rk.prod(cubic(t),kron(id==1))), spar="m",

weights=varIdent(form=~1|id),

cor=corSymm(form=~1|pair), data=bisp.dat)

> bisp.fit3

...

GML estimate(s) of smoothing parameter(s) : 0.2793703 0.3788567

Equivalent Degrees of Freedom (DF): 11.84544

Estimate of sigma: 0.4616973

Correlation structure of class corSymm representing

Correlation:

1

2 0.523

Variance function structure of class varIdent representing

0 1

1 2.270982

29



> p.bisp.fit3.1 <- predict(bisp.fit3,newdata=bisp.dat[bisp.dat$id==0,],

terms=c(1,0,1,0,1,0))

> p.bisp.fit3.2 <- predict(bisp.fit3,newdata=bisp.dat[bisp.dat$id==1,],

terms=c(1,1,1,1,0,1))

> p.bisp.fit3.1$pstd <- p.bisp.fit3.1$pstd*sqrt((2*n-bisp.fit3$df)

/(2*n-bisp.fit3$df-1))

> p.bisp.fit3.2$pstd <- p.bisp.fit3.2$pstd*sqrt((2*n-bisp.fit3$df)

/(2*n-bisp.fit3$df-1))

> bisp.fit4 <- ssr(y~id*I(t-.5), rk=list(cubic(t),

rk.prod(cubic(t),kron(id==1))),

spar="m", weights=varIdent(form=~1|id),

cor=corSymm(form=~1|pair), data=bisp.dat)

> p.bisp.fit4.1 <- predict(bisp.fit4,newdata=bisp.dat[bisp.dat$id==0,],

terms=c(1,0,1,0,1,0))

> p.bisp.fit4.2 <- predict(bisp.fit4,newdata=bisp.dat[bisp.dat$id==1,],

terms=c(1,1,1,1,1,1))

> p.bisp.fit4.3 <- predict(bisp.fit4,newdata=bisp.dat[bisp.dat$id==1,],

terms=c(0,1,0,1,0,1))

> p.bisp.fit4.4 <- predict(bisp.fit4,newdata=bisp.dat[bisp.dat$id==1,],

terms=c(0,0,0,1,0,1))

> p.bisp.fit4.1$pstd <- p.bisp.fit4.1$pstd*sqrt((2*n-bisp.fit4$df)

/(2*n-bisp.fit4$df-1))

> p.bisp.fit4.2$pstd <- p.bisp.fit4.2$pstd*sqrt((2*n-bisp.fit4$df)

/(2*n-bisp.fit4$df-1))

> p.bisp.fit4.3$pstd <- p.bisp.fit4.3$pstd*sqrt((2*n-bisp.fit4$df)

/(2*n-bisp.fit4$df-1))

> p.bisp.fit4.4$pstd <- p.bisp.fit4.4$pstd*sqrt((2*n-bisp.fit4$df)

/(2*n-bisp.fit4$df-1))

> bisp.fit5 <- ssr(y~id*I(t-.5),

rk=list(cubic(t),rk.prod(cubic(t),kron((id==0)-(id==1)))),

spar="m", weights=varIdent(form=~1|id),

cor=corSymm(form=~1|pair), data=bisp.dat)

> p.bisp.fit5.1 <- predict(bisp.fit5,newdata=bisp.dat[bisp.dat$id==0,],

terms=c(1,0,1,0,1,1))

> p.bisp.fit5.2 <- predict(bisp.fit5,newdata=bisp.dat[bisp.dat$id==1,],

terms=c(1,1,1,1,1,1))

> p.bisp.fit5.3 <- predict(bisp.fit5,newdata=bisp.dat[bisp.dat$id==1,],

terms=c(0,1,0,1,0,1))

> p.bisp.fit5.4 <- predict(bisp.fit5,newdata=bisp.dat[bisp.dat$id==1,],

terms=c(0,0,0,1,0,1))

> p.bisp.fit5.1$pstd <- p.bisp.fit5.1$pstd*sqrt((2*n-bisp.fit5$df)

/(2*n-bisp.fit5$df-1))

> p.bisp.fit5.2$pstd <- p.bisp.fit5.2$pstd*sqrt((2*n-bisp.fit5$df)

/(2*n-bisp.fit5$df-1))

30



> p.bisp.fit5.3$pstd <- p.bisp.fit5.3$pstd*sqrt((2*n-bisp.fit5$df)

/(2*n-bisp.fit5$df-1))

> p.bisp.fit5.4$pstd <- p.bisp.fit5.4$pstd*sqrt((2*n-bisp.fit5$df)

/(2*n-bisp.fit5$df-1))

For each fit, we calculate the estimated functions and posterior variances. For fits bisp.fit4 and
bisp.fit5, we also calculate the estimates and posterior variances of f1−f2 and g12 in (57). They are
used to check if f1 = f2 and if they are parallel respectively. Note that we inflate the posterior variances
by one more degree of freedom used for estimating the correlation parameter. These estimates are
shown in Figures 4, 5 and 6. Even though not obvious in Figure 4, the Bayesian confidence intervals of
the joint estimates are uniformly narrower than those of the function-by-function estimates. Obviously
from Figures 5 and 6 that these two functions are not equal, nor parallel.

0.0 0.2 0.4 0.6 0.8 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

t

f1

marginal fit of f1

true
estimate
95% CI

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

3

t

f2

marginal fit of f2

0.0 0.2 0.4 0.6 0.8 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

t

f1

joint fit of f1

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

3

t

f2

joint fit of f2

Figure 4: Upper left: estimate of f1 from bisp.fit1. Upper right: estimate of f2 from bisp.fit2.
Lower left: estimate of f1 from bisp.fit3. Lower right: estimate of f2 from bisp.fit3. Dashed
lines are the true function. Solid lines are the estimates. Dotted lines are 95% Bayesian confidence
intervals.

0.0 0.2 0.4 0.6 0.8 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

t

f1

estimate of f1

true
estimate
95% CI

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

3

t

f2

estimate of f2

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

3

t

f2
−f

1

estimate of f2−f1

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2

t

f2
−f

1

test parallel

Figure 5: Upper left: estimate of f1 from bisp.fit4. Upper right: estimate of f2 from bisp.fit4.
Lower left: estimate of f1−f2 from bisp.fit4. Lower right: estimate of g12 from bisp.fit4. Dashed
lines are the true function. Solid lines are the estimates. Dotted lines are 95% Bayesian confidence
intervals.

31



0.0 0.2 0.4 0.6 0.8 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

t

f1

estimate of f1

true
estimate
95% CI

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

3

t

f2

estimate of f2

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

3

t

f2
−f

1

estimate of f2−f1

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2

t

f2
−f

1

test parallel

Figure 6: Upper left: estimate of f1 from bisp.fit5. Upper right: estimate of f2 from bisp.fit5.
Lower left: estimate of f1−f2 from bisp.fit5. Lower right: estimate of g12 from bisp.fit5. Dashed
lines are the true function. Solid lines are the estimates. Dotted lines are 95% Bayesian confidence
intervals.

8 Examples

Examples in this section are intended to show usage of the functions in ASSIST. They are not formal
data analyses. All examples were run on R Version 1.7.1 for Linux. Minor differences may occur on
different platforms.

8.1 Arosa Ozone Data

This is a data set in Andrews and Herzberg (1985). Monthly mean ozone thickness (Dobson units) in
Arosa, Switzerland from 1926 to 1971 was recorded. The data is available as Arosa. We are interested
in investigating how ozone thickness changes over months and years.

We use this data to illustrate how to fit a periodic spline, a partial spline, an L-spline, an L-
spline with unequal variances, an L-spline spline with correlated random errors, a partial spline with
both variables month and year, an SS ANOVA model, partial splines for the whole time series, a
semi-parametric linear mixed effects model, and some varying coefficients models.

Let us ignore the year effect first and concentrate on the month effect on ozone thickness. Let
csmonth = (month− .5)/12. We first fit a parametric sine and cosine model

thickness(csmonth) = µ + β1 sin(2πcsmonth) + β2 cos(2πcsmonth) + ε(csmonth), (58)

and a periodic spline

thickness(csmonth) = f(csmonth) + ε(csmonth), (59)

where f ∈ W2(per).

> data(Arosa)

> Arosa$csmonth <- (Arosa$month-0.5)/12

> attach(Arosa)

> ozone.fit1 <- lm(thick~sin(2*pi*csmonth)+cos(2*pi*csmonth), data=Arosa)

> summary(ozone.fit1)

32



...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 337.0986 0.7605 443.263 < 2e-16 ***

sin(2 * pi * csmonth) -47.3881 1.0719 -44.209 < 2e-16 ***

cos(2 * pi * csmonth) 7.7966 1.0790 7.226 1.81e-12 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 17.31 on 515 degrees of freedom

Multiple R-Squared: 0.7958,Adjusted R-squared: 0.795

F-statistic: 1003 on 2 and 515 DF, p-value: < 2.2e-16

> ozone.fit2 <- ssr(thick~1, rk=periodic(csmonth), spar="m", data=Arosa)

> summary(ozone.fit2)

...

Coefficients (d):

(Intercept)

337.091

GML estimate(s) of smoothing parameter(s) : 1.717233e-06

Equivalent Degrees of Freedom (DF): 9.0131

Estimate of sigma: 16.78767

> anova(ozone.fit2,simu.size=500)

Testing H_0: f in the NULL space

test.value simu.size simu.p-value approximate.p-value

LMP 0.2663855 500 0

GML 0.2025431 500 0 0

Figure 7 shows that parts of the parametric sine and cosine fit are outside the confidence intervals
of the periodic spline fit. It suggests that the simple parametric model may not be sufficient. We
can test the departure from the sine-cosine model using a partial spline model by adding the sine and
cosine functions to the null space of a periodic spline

thickness(csmonth)

= µ + β1 sin(2πcsmonth) + β2 cos(2πcsmonth) + f(csmonth) + ε(csmonth), (60)

where f ∈ W2(per) ª {1}.

> ozone.fit3 <- ssr(thick~sin(2*pi*csmonth)+cos(2*pi*csmonth),

rk=periodic(csmonth), spar="m", data=Arosa)

> summary(ozone.fit3)

...

Coefficients (d):

(Intercept) sin(2 * pi * csmonth) cos(2 * pi * csmonth)

337.0933 -47.42298 7.696095

33



.
.

.
.

.

.

. .
. .

.

.
.

.
.

. .

.
. .

.
.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.
.
.

.

. .

.

.

.

.

.

.
.

.

.
. .

.
.

.
.

.

.
.

.

.

.
. . .

. .
.

.

.
.

.

.
.

. . .
.

.

.

.

.
.

.
.

.

.
.

.
.

.

. .
.

.

.

.
.

.
.

.
.

. .

.
.

.

.

. .

.

. .

.

.

.

.

.
.

.
. .

.

. .
.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.
.

.

.

.

.
.

.
.

.

.

.

.
.

.

.
.

.

.
.

. .

.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

. .

.

.
. .

.

.

.

.

.

.
. .

.
.

. . .

.

.

. .
. .

.

. .

.
.

.

.

.

.

.

.
.

.

.
.

.

.
.

.

.
. .

.
.

.
.

.

.
.

.

.

.

.

.

.

.
..

.
.

. .

.
.

.
.

.
.

.

.
.

.
.

. .

.
. .

.
.

.

.
.

. . .

. .

.

.

.
.

.

.
.

. .

.

.

.
.

.

. .

.

.

. .

. .

. .

. .
. .

.

.
.

.
.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.
.

.
.

.

.
.

.

.

.

.

.
.

. .

.

.

. . .

.

. .
.

. .

.

.
.

.

.

.

.

.
.

.
.

. .

.

.

.
.

.

.

. . .

. .

.

.
.

.

. .

.

.

.
. .

.

.
.

.
.

.

.

.

.

. .

.
.

.
.

.

.
.

. .

.
.

.

.

.
.

.

.
.

.

.
.

.

.

. . .

.

.

.

.
. .

.
.

.
.

.

.

.. .

.
.

.

.

.

.
. . .

.
.

.
.

. .

.

.

.

.

.
.

.

.

.

. .

. .
.

.

.
.

.
.

.

.
.

.

.

.
. .

. .
. .

.

. .

. .

.

.

.

.
.

. .

.
.

.

.
.

. . .

.

.

.
.

.
.

.

.

. .

.

.
. .

.

.
.

.
.

.

month

th
ic

kn
es

s

30
0

35
0

40
0

J F M A M J J A S O N D

spline fit
95% Bayes CI
Sin-Cos fit

Figure 7: Parametric and periodic spline fits. Points are observations; Solid line is the periodic spline
fit; Dotted lines are 95% Bayesian confidence intervals; Dashed line is the parametric fit.

GML estimate(s) of smoothing parameter(s) : 4.49682e-06

Equivalent Degrees of Freedom (DF): 7.46103

Estimate of sigma: 16.78036

> anova(ozone.fit3,simu.size=500)

Testing H_0: f in the NULL space

test.value simu.size simu.p-value approximate.p-value

LMP 0.001262064 500 0

GML 0.9553638 500 0 3.490208e-12

The departure from the parametric model is significant. Note that with penalty
∫ 1
0 (f ′′)2dt, sine and

cosine functions we added to the null space are also in the space W2(per)ª{1}. Thus the parametric
part of the partial spline model (60) is not orthogonal to W2(per) ª {1}. Another approach to test
the parametric model is to use a periodic L-spline model with L = D[D2 + (2π)2]:

thickness(csmonth)

= µ + β1 sin(2πcsmonth) + β2 cos(2πcsmonth) + f(csmonth) + ε(csmonth), (61)

where f ∈ W2(per) ª {1, sin(2πcsmonth), cos(2πcsmonth)}. Now the sine and cosine functions are
orthogonal to f . Thus this approach will be more efficient. See Wang and Brown (1996) for detail.

> ozone.fit4 <- update(ozone.fit3, rk=lspline(csmonth,type="sine1"))

> summary(ozone.fit4,simu.size=500)

...

34



Coefficients (d):

(Intercept) sin(2 * pi * csmonth) cos(2 * pi * csmonth)

337.0937 -47.42247 7.695888

GML estimate(s) of smoothing parameter(s) : 5.404848e-09

Equivalent Degrees of Freedom (DF): 6.421139

Estimate of sigma: 16.77356

> anova(ozone.fit4,simu.size=500)

Testing H_0: f in the NULL space

test.value simu.size simu.p-value approximate.p-value

LMP 2.539163e-06 500 0

GML 0.9533696 500 0 1.164513e-12

Figure 8 shows plots of the overall fits and their projections for three models: ozone.fit2,
ozone.fit3 and ozone.fit4. As we can see, all three models have similar overall fits. But their
projections are quite different. As expected, the confidence intervals for the projections of the L-
spline model (61) are narrower than those of the partial spline model (60).

Figure 7 suggests that the variances may not be a constant. We calculate residual variances for
each month and plot them on the log scale (left panel of Figure 9). It is obvious that they are not
equal. It seems that simple sine and cosine functions can be used to model the variance function.

> v <- sapply(split(ozone.fit4$resi,month),var)

> a <- unique(csmonth)

> b <- lm(log(v)~sin(2*pi*a)+cos(2*pi*a))

> summary(b)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.43715 0.05763 94.341 8.57e-15 ***

sin(2 * pi * a) -0.71786 0.08151 -8.807 1.02e-05 ***

cos(2 * pi * a) -0.49854 0.08151 -6.117 0.000176 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1996 on 9 degrees of freedom

Multiple R-Squared: 0.9274,Adjusted R-squared: 0.9113

F-statistic: 57.49 on 2 and 9 DF, p-value: 7.48e-06

Therefore we assume the following variance function for model (61)

σ2(csmonth) = Var(ε(csmonth)) = σ2 exp{2[a sin(2πcsmonth) + b cos(2πcsmonth)]}.

> ozone.fit5 <- update(ozone.fit4, weights=varComb(varExp(form=

~sin(2*pi*csmonth)), varExp(form=~cos(2*pi*csmonth))))

> summary(ozone.fit5)

...

Coefficients (d):

(Intercept) sin(2 * pi * csmonth) cos(2 * pi * csmonth)

35



0

100

200

300

400

overall
fit4

0.0 0.2 0.4 0.6 0.8 1.0

parametric
fit4

smooth
fit4

0.0 0.2 0.4 0.6 0.8 1.0

overall
fit3

parametric
fit3

0

100

200

300

400

smooth
fit3

0

100

200

300

400

overall
fit2

parametric
fit2

0.0 0.2 0.4 0.6 0.8 1.0

smooth
fit2

csmonth

th
ic

k

Figure 8: Overall fits and their projections. “Smooth” represents the component in the space H1.
Dotted lines are 95% Bayesian confidence intervals.

36



337.0753 -47.42951 7.773344

GML estimate(s) of smoothing parameter(s) : 3.676933e-09

Equivalent Degrees of Freedom (DF): 6.84808

Estimate of sigma: 15.22469

Combination of:

Variance function structure of class varExp representing

expon

-0.3555964

Variance function structure of class varExp representing

expon

-0.2496355

The estimated variance parameters, −0.3555964 and −0.2496355, are very close to (up to a scale of
2 by definition) those based on residual variances, −0.7178552 and −0.4985431. The fitted variance
function is plotted on the left panel of Figure 9. As can be seen, it is almost identical to the fit
based on residual variances. The right panel of Figure 9 plots the L-spline fit to the mean function
with 95% Bayesian confidence intervals. Note that these confidence intervals are conditional on the
estimated variance parameters. Thus they may have less coverage than the nominal value since the
degrees of freedom for estimating the variance parameters are not counted. Nevertheless, we can see
that unequal variances are reflected in the widths of these confidence intervals.

month

lo
g(

va
ria

nc
e)

o

o

o o

o

o

o

o

o

o

o

o

4.
5

5.
0

5.
5

6.
0

6.
5

J F M A M J J A S O N D

.
.

.

.

.

.

. .
. .

.

.

.

.
.

. .

.
. .

.
.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.
.
.

.

. .

.

.

.

.

.

.
.

.

.
. .

.
.

.
.

.

.
.

.

.

.
. . .

. .

.

.

.
.

.

.
.

. . .
.

.

.

.

.
.

.
.

.

.

.

.

.

.

. .

.
.

.

.

.
.

.
.

.

. .

.
.

.

.

. .

.

. .

.

.

.

.

.
.

.
. .

.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.
.

.

.

.

.
.

.

.
.

.

.
.

. .

.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

. .

.

.
. .

.

.

.

.

.

.
. .

.
.

. . .

.

.

. .
. .

.

. .

.
.

.

.

.

.

.

.
.

.

.
.

.

.
.

.

.

. .

.
.

.
.

.

.
.

.

.

.

.

.

.

.
..

.
.

. .

.
.

.
.

.

.

.

.

.

.
.

. .

.
. .

.
.

.

.
.

. . .

. .

.

.

.

.

.

.
.

. .

.

.

.
.

.

. .

.

.

. .

. .

. .

. .
. .

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.
.

.

.
.

.

.

.

.

.

.

. .

.

.

. . .

.

. .
.

. .

.

.
.

.

.

.

.

.
.

.
.

. .

.

.

.
.

.

.

. . .

. .

.

.
.

.

. .

.

.

.
. .

.

.

.

.
.

.

.

.

.

. .

.

.

.
.

.

.
.

. .

.
.

.

.

.

.
.

.
.

.

.
.

.

.

. . .

.

.

.

.
. .

.
.

.
.

.

.

.. .

.
.

.

.

.

.
. . .

.
.

.
.

. .

.

.

.

.

.
.

.

.

.

. .

. .
.

.

.
.

.
.

.

.
.

.

.

.
. .

. .

. .

.

. .

. .

.

.

.

.
.

. .

.
.

.

.

.

. . .

.

.

.
.

.
.

.

.

. .

.

.
. .

.

.
.

.

.

.

month

th
ic

kn
es

s

30
0

35
0

40
0

J F M A M J J A S O N D

Figure 9: Left: circles are residual variances on the log scale, dotted line is the fit to residual variances,
and solid line is the fit from ozone.fit5. Right: points are observations, solid line is the L-spline fit,
and dotted lines are 95% Bayesian confidence intervals.

Observations close in time may be correlated. In the following we include a first-order autoregres-
sive structure for random errors. Since some observations are missing, we use the continuous AR(1)
correlation structure. That is, we assume the covariance between the random error of month i1 in year

37



j1 and the random error of month i2 in year j2 is
√

σ2((i1 − .5)/12)σ2((i2 − .5)/12)ρ|i1−i2|+12|j1−j2|.

> Arosa$z <- month+12*(year-1)

> ozone.fit6 <- update(ozone.fit5,corr=corCAR1(form=~z))

> summary(ozone.fit6)

...

Coefficients (d):

(Intercept) sin(2 * pi * csmonth) cos(2 * pi * csmonth)

336.8969 -47.34584 7.788939

GML estimate(s) of smoothing parameter(s) : 3.573493e-09

Equivalent Degrees of Freedom (DF): 7.326922

Estimate of sigma: 15.31061

Correlation structure of class corCAR1 representing

Phi

0.3410923

Combination of:

Variance function structure of class varExp representing

expon

-0.3602399

Variance function structure of class varExp representing

expon

-0.3009847

Now let us consider the effects of both month and year variables. First, suppose that the simple
sine and cosine functions are appropriate for modeling the month effect, and we do not want to assume
a parametric model for the year effect. Then we may consider the following partial spline model

thickness(csmonth, csyear)

= β1 sin(2πcsmonth) + β2 cos(2πcsmonth) + f(csyear) + ε(csmonth, csyear), (62)

where csyear = (year− 1)/45 and f ∈ W2([0, 1]).

> csyear <- (year-1)/45

> ozone.fit7 <- ssr(thick~sin(2*pi*csmonth)+cos(2*pi*csmonth)+I(csyear-0.5),

rk=cubic(csyear), spar="m", data=Arosa)

> summary(ozone.fit7)

...

Coefficients (d):

(Intercept) sin(2 * pi * csmonth) cos(2 * pi * csmonth) I(csyear - 0.5)

336.8798 -47.37047 7.776179 7.199672

GML estimate(s) of smoothing parameter(s) : 4.741079e-07

Equivalent Degrees of Freedom (DF): 16.49958

Estimate of sigma: 16.5235

> anova(ozone.fit7,simu.size=500)

Testing H_0: f in the NULL space

38



test.value simu.size simu.p-value approximate.p-value

LMP 0.01157664 500 0.026

GML 0.9891654 500 0 0.0004092629

If we want to model both month and year non-parametrically, we can fit the following SS ANOVA
model with a periodic spline for month and a cubic spline for year:

thickness(csmonth, csyear)

= µ + βcsyear + s1(csmonth) + s2(csyear) + sl(csmonth, csyear)

+ss(csmonth, csyear) + ε(csmonth, csyear). (63)

> ozone.fit8 <- ssr(thick~I(csyear-0.5), spar="m", data=Arosa,

rk=list(periodic(csmonth), cubic(csyear),

rk.prod(periodic(csmonth), kron(csyear-.5)),

rk.prod(periodic(csmonth), cubic(csyear))))

> summary(ozone.fit8)

...

Coefficients (d):

(Intercept) I(csyear - 0.5)

336.8298 6.031531

GML estimate(s) of smoothing parameter(s) :

4.108999e-01 7.457006e-02 1.656897e+05 5.438436e+03

Equivalent Degrees of Freedom (DF): 24.59541

Estimate of sigma: 15.84154

> grid <- data.frame(csmonth=seq(0,1,len=50), csyear=seq(0,1,len=50))

> interaction.fit8 <- predict(ozone.fit8, grid, terms=c(0,0,0,0,1,1))

> max(abs(interaction.fit8$fit)/interaction.fit8$pstd)

[1] 0.009646192

The smoothing parameters for the interaction terms between month and year are large, which
indicates that the interaction effects are small. Indeed the fitted values of interaction terms are very
small (around 10−4) compared to posterior standard deviations (around 0.01). Therefore, we delete
these interaction terms in our final model.

> ozone.fit9 <- update(ozone.fit8, rk=list(periodic(csmonth), cubic(csyear)))

> summary(ozone.fit9)

...

Coefficients (d):

(Intercept) I(csyear - 0.5)

336.8287 5.989813

GML estimate(s) of smoothing parameter(s) : 0.41248034 0.07316391

Equivalent Degrees of Freedom (DF): 24.66142

Estimate of sigma: 15.8378

Figure 10 shows the estimated main effects of month and year.

We may also consider observations as a long time series. Note that many observations are missing,
thus the state space approach in Kitagawa and Gersch (1984) cannot be used directly. Our approach

39



month

th
ick

ne
ss

o

o

o

o

o

o

o

o

o
o

o

o

-4
0

-2
0

0
20

40

J F M A M J J A S O N D

Main effect of month

year

th
ick

ne
ss o

o

o

o

o

o o

o

o o

o

o

o
o

o

o
o

o

o

o

o
o o

o o
o

o o

o

o

o

o o

o

o
o

o

o

o

o

o

o

o

o

o

-4
0

-3
0

-2
0

-1
0

0
10

20

1926 1935 1944 1953 1962 1971

Main effect of year

Figure 10: Estimated main effects with 95% Bayesian confidence intervals. A dot in the left panel is
the average thickness for a particular month minus the overall mean. A dot in the right panel is the
average thickness for a particular year minus the overall mean.

allows observations at unequally spaced points. Thus it can also be used to impute missing obser-
vations. Let us define a time variable as t = csmonth + year − 1. Similar to Kitagawa and Gersch
(1984), we may consider the following model

thickness(t) = µ + β1 sin(2πt) + β2 cos(2πt) + f(t) + ε(t), (64)

where sin(2πt) and cos(2πt) model seasonal trend, f models the long term trend and f ∈ W2([0, T ])ª

{1}, T = 45.45833 is the maximum value of t, and ε(t)’s are random errors and ε(t)
iid
∼ N(0, σ2). Model

(64) is a partial spline. Since the domain is [0, T ] with T 6= 1, we use the cubic2 kernel function.

> Arosa$t <- csmonth+Arosa$year-1

> ozone.fit10 <- ssr(thick~t+sin(2*pi*t)+cos(2*pi*t), rk=cubic2(t),

spar="m", data=Arosa)

> summary(ozone.fit10)

...

Coefficients (d):

(Intercept) t sin(2 * pi * t) cos(2 * pi * t)

330.8107521 -0.9901175 -47.3246660 7.7786452

GML estimate(s) of smoothing parameter(s) : 0.01568941

Equivalent Degrees of Freedom (DF): 20.38134

Estimate of sigma: 16.25793

> anova(ozone.fit10, simu.size=500)

Testing H_0: f in the NULL space

test.value simu.size simu.p-value approximate.p-value

LMP 1075.457 500 0.01

GML 0.98481 500 0 3.64301e-05

40



Estimate of the overall function and its two components, seasonal trend and long term trend, are
shown in Figure 11. We can see that the long term trend is different from a constant.

Observations close in time are likely to be correlated. Suppose that we want to use the exponential
correlation structure with nugget effect. Specifically, regard ε(t) as a zero mean stochastic process with

Cov(ε(s), ε(t)) =

{

σ2(1 − c) exp(−|s − t|/r), s 6= t,
σ2, s = t,

(65)

where c is the nugget effect, and r is the range parameter.

> ozone.fit11 <- update(ozone.fit10, corr=corExp(form=~t,nugget=T))

> ozone.fit11

...

GML estimate(s) of smoothing parameter(s) : 469618845337

Equivalent Degrees of Freedom (DF): 4

Estimate of sigma: 17.36963

Correlation structure of class corExp representing

range nugget

0.3661093 0.6364710

New estimates are plotted in Figure 12. We can see that now the long term trend is almost a constant.
The equivalent degrees of freedom is decreased to 4.008176.

The null space contains four components: the constant, linear, sine and cosine functions. Using the
cubic2 kernel penalizes the sine and cosine functions which may lead to biases. If this is to be avoided,
we can use the lspline kernel with type=’’linSinCos’’. The period for the seasonal component is
1, while the period for the function lspline with type=’’linSinCos’’ is 2π. Therefore we multiply
the covariate t by a constant 2π to match the scale.

> ozone.fat12 <- update(ozone.fit11, rk=lspline(2*pi*t,type="linSinCos"))

> ozone.fit12

...

GML estimate(s) of smoothing parameter(s) : 9.562702e+13

Equivalent Degrees of Freedom (DF): 4

Estimate of sigma: 17.37282

Correlation structure of class corExp representing

range nugget

0.3665007 0.6360280

The estimates are plotted in Figure 13.

As in Kitagawa and Gersch (1984), sometimes we want to use a stochastic process to model the
autocorrelation and regard this process as part of the signal. Then we need to separate this process
with measurement errors and predict it at desired points. Specifically, assume

thickness(t) = µ + β1 sin(2πt) + β2 cos(2πt) + f(t) + u(t) + ε(t), (66)

where f and ε are the same as in model (64). Assume that u(t) is a stochastic process independent
of ε(t) with mean zero and Cov(u(s), u(t)) = σ2

1 exp(−|s− t|/r), where r is the range parameter as in
(65).

Denote t as the vector of design points for the variable t. Let u(t) be the vector of the u process
evaluated at design points. u(t) are random effects and u(t) ∼ N(0, σ2

1D), where D depends the

41



0 10 20 30 40

30
0

35
0

40
0

time

th
ic

kn
es

s

Observations and overall fit

0 10 20 30 40

28
0

30
0

32
0

34
0

36
0

38
0

time

th
ic

kn
es

s

Seasonal component

0 10 20 30 40

−
10

0
10

20
30

time

th
ic

kn
es

s

Long term trend

Figure 11: Plots of estimates from ozone.fit10. Above: observations as dots and estimated overall
function as the solid line. Middle: estimated seasonal trend. Below: estimated long term trend as the
solid line and 95% Bayesian confidence intervals as two dotted lines.

42



0 10 20 30 40

30
0

35
0

40
0

time

th
ic

kn
es

s

Observations and overall fit

0 10 20 30 40

30
0

32
0

34
0

36
0

38
0

time

th
ic

kn
es

s

Seasonal component

0 10 20 30 40

−
5

0
5

10
15

time

th
ic

kn
es

s

Long term trend

Figure 12: Plots of estimates from ozone.fit11. Above: observations as dots and estimated overall
function as the solid line. Middle: estimated seasonal trend. Below: estimated long term trend as the
solid line and 95% Bayesian confidence intervals as two dotted lines.

43



0 10 20 30 40

30
0

35
0

40
0

time

th
ic

kn
es

s

Observations and overall fit

0 10 20 30 40

30
0

32
0

34
0

36
0

38
0

time

th
ic

kn
es

s

Seasonal component

0 10 20 30 40

−
5

0
5

10
15

time

th
ic

kn
es

s

Long term trend

Figure 13: Plots of estimates from ozone.fit12. Above: observations as dots and estimated overall
function as the solid line. Middle: estimated seasonal trend. Below: estimated long term trend as the
solid line and 95% Bayesian confidence intervals as two dotted lines.

44



parameter r. (66) is a SLM model. However, it cannot be fitted directly using slm since D depends
on the range parameter r nonlinearly. We fit model (66) in two steps. We first regard u(t) as part
of random error and estimate the range parameter. This is done in ozone.fit11. Then we calculate
the estimate of D (without nugget effect) and regard it as the true covariance matrix. We calculate
the Cholesky decomposition of D as D = ZZT , and transform the random effects u(t) = Zb, where
b ∼ N(0, σ2

1I). Now we are ready to fit the transformed SLM:

> tau <- coef(ozone.fit11$cor.est, F)

> D <- corMatrix(initialize(corExp(tau[1],form=~t), data=Arosa))

> Z <- chol.new(D)

> ozone.fit13 <- slm(thick~t+sin(2*pi*t)+cos(2*pi*t), rk=cubic2(t),

random=list(pdIdent(~Z-1)), data=Arosa)

> summary(ozone.fit13)

...

Coefficients (d):

(Intercept) t sin(2 * pi * t) cos(2 * pi * t)

332.2848808 0.3174285 -47.2930087 7.8994571

GML estimate(s) of smoothing parameter(s) : 50.62773

Equivalent Degrees of Freedom (DF): 4.517319

Estimate of sigma: 13.86935

Suppose that we want to predict u on grid points s, u(s). Let R = Cov(u(s), u(t)). Then
û(s) = RD−1û(t) = RZ−T b̂.

> grid3 <- data.frame(t=seq(0,max(Arosa$t)+0.001,len=500))

> newdata <- data.frame(t=c(Arosa$t,grid3$t))

> RD <- corMatrix(initialize(corExp(tau[1],form=~t), data=newdata))

> R <- RD[(length(Arosa$t)+1):length(newdata$t),1:length(Arosa$t)]

> u.new <- R%*%t(solve(Z))%*%as.vector(ozone.fit13$lme.obj$coef$random[[2]])

Estimates from ozone.fit13 are shown in Figure 14.

We now show how to use nnr and snr to fit varying coefficients models. Suppose that the
thickness in each year can be well approximated by a sinusoidal function of month. We want to
investigate how two coefficients, the average thickness and amplitude, change over years. Specifi-
cally, we consider the following model:

thickness(csmonth, csyear)

= f1(csyear) + f2(csyear) cos 2π (csmonth + alogit(α)) + ε(csmonth, csyear), (67)

where f1(csyear) and f2(csyear) are yearly average thickness and amplitude respectively, alogit(α) =
exp(α)/(1 + exp(α)) guarantees the horizontal shift to be between 0 and 1. Assume that f1, f2 ∈
W2([0, 1]). Note that the constraint f2 ≥ 0 is not enforced here. We may replace f2 by exp(f2) as
the amplitude function. The resulting model will be fitted later. Model (67) is a special case of the
SNR model, and thus can be fitted using the function snr. We use the coefficients from ozone.fit1

to calculate the initial value for α.

> tmp <- atan(-ozone.fit1$coef[3]/ozone.fit1$coef[2])/(2*pi)

> tmp <- log(tmp/(1-tmp))

> ozone.fit14 <- snr(thick~f1(csyear)+f2(csyear)*cos(2*pi*(csmonth+alogit(a))),

func=list(f1(x)+f2(x)~list(~x, cubic(x))), params=list(a~1),

45



0 10 20 30 40

30
0

35
0

40
0

time

th
ic

kn
es

s

Observations and overall fit

0 10 20 30 40

28
0

32
0

36
0

time

th
ic

kn
es

s

Seasonal component

0 10 20 30 40

−
5

5
15

time

th
ic

kn
es

s

Long term trend

0 10 20 30 40

−
20

0
10

time

th
ic

kn
es

s

Local Stochastic trend

Figure 14: Plots of estimates from ozone.fit13. First row: observations as dots and estimated
overall function as the solid line. Second row: estimated seasonal trend. Third row: estimated long
term trend as the solid line and 95% Bayesian confidence intervals as two dotted lines. Fourth row:
estimated local stochastic trend.

46



data=Arosa, start=list(params=c(tmp)), spar="m")

> summary(ozone.fit14)

Semi-parametric Nonlinear Regression Model Fit by Gauss-Newton Method

Model: thick ~ f1(csyear) + f2(csyear) * cos(2 * pi * (csmonth + alogit(a)))

Data: Arosa

AIC BIC logLik

4362.429 4370.929 -2179.214

Coefficients:

Value Std.Error t-value p-value

a -1.243126 0.01933295 -64.30086 0

Standardized residuals:

Min Q1 Med Q3 Max

-3.37533987 -0.60538971 -0.03263471 0.49885054 3.13869256

GML estimate(s) of smoothing spline parameter(s): 0.0001225915 0.4999998276

Equivalent Degrees of Freedom (DF) for spline function: 16.95087

Residual standard error: 16.81619

Converged after 3 iterations

> p.ozone.fit14 <- intervals(ozone.fit14,data.frame(x=seq(0,1,len=100)),

terms=list(f1=matrix(c(1,1,1,1,1,0,0,0,1),ncol=3,byrow=T),

f2=matrix(c(1,1,1,1,1,0,0,0,1),ncol=3,byrow=T)))

t

f1

0.0 0.2 0.4 0.6 0.8 1.032
0

33
0

34
0

35
0

overall

0.0 0.2 0.4 0.6 0.8 1.0

33
0

33
5

34
0

34
5

parametric

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

0
10

20

smooth

Figure 15: Estimated f1 (overall), and its projections to H0 (parametric) and H1 (smooth). Dotted
lines are 95% Bayesian confidence intervals.

Figures 15 and 16 show the estimated functions and their projections. The yearly average thickness
has a similar trend as before, and the amplitude has a linear increasing, but non-significant, trend.

The sinusoidal function for monthly changes may be too restrictive. Then we can consider the

47



t

f2

0.0 0.2 0.4 0.6 0.8 1.0

42
44

46
48

50
52

54

overall

0.0 0.2 0.4 0.6 0.8 1.0

42
44

46
48

50
52

54

parametric

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2

smooth

Figure 16: Estimated f2 (overall), and its projections to H0 (parametric) and H1 (smooth). Dotted
lines are 95% Bayesian confidence intervals.

following model

thickness(csmonth, csyear)

= f1(csyear) + f2(csyear)f3(csmonth) + ε(csmonth, csyear), (68)

where the cos function in model (67) is replaced by a nonparametric periodic function f3. Assume that
f3 ∈ W2(per) ª {1}. The constant functions were removed from the model space for identifiability.
Thus we have

∫ 1
0 f3(t)dt = 0. Also, for identifiability, we assume sup |f3(t)| = 1. Again, we did not

enforce the constraint f2 ≥ 0. Model (68) is a special case of the NNR model, thus can be fitted
using nnr. In the following, instead of using nnr directly, we write a simple program using backfitting
methods to estimate f1, f2 and f3. The purpose is to show that writing S codes for more complicated
models is fairly easy.

# transform time variable into [0,1]

z <- (Arosa$t-min(Arosa$t))/(max(Arosa$t)-min(Arosa$t))

# create matrices for RK’s

S1 <- S2 <- cubic(z)

S3 <- periodic((max(Arosa$t)-min(Arosa$t))*z)

# find initial values

f3.tmp <- ssr(thick~1,rk=S3,data=Arosa,spar="m")

f3.est <- as.vector(S3%*%f3.tmp$rkpk.obj$c/max(abs(S3%*%f3.tmp$rkpk.obj$c)))

f2.est <- rep(max(abs(S3%*%f3.tmp$rkpk.obj$c)),length(thick))

f1.est <- rep(f3.tmp$rkpk.obj$d[1],length(thick))

# backfitting

prec <- 1

while (prec>.0001) {

# fix f2 and f3, fit f1

y.tmp <- thick-f2.est*f3.est

f1.tmp <- ssr(y.tmp~z,rk=S1,spar="m",limnla=c(-3,1))

48



f1.est.old <- f1.est

f1.est <- f1.tmp$fit

# fix f1 and f3, fit f2. Note RK are multiplied by f3

y.tmp <- thick-f1.tmp$fit

f2.tmp <- ssr(y.tmp~f3.est+I(f3.est*z)-1,rk=rk.prod(S2,f3.est),

spar="m",limnla=c(-3,1))

f2.est.old <- f2.est

f2.est <- f2.tmp$rkpk.obj$d[1]+f2.tmp$rkpk.obj$d[2]*z

+as.vector(S2%*%f2.tmp$rkpk.obj$c)

# fix f1 and f2, fit f3, note the empty null space and weights

f3.tmp <- ssr(I(y.tmp/f2.est)~-1,rk=S3,spar="m",weights=f2.est)

f3.est.old <- f3.est

# enforce \sup |f_3(t)|=1

f3.est <- as.vector(S3%*%f3.tmp$rkpk.obj$c/

max(abs(S3%*%f3.tmp$rkpk.obj$c)))

# stopping criteria

prec <- max(sum((f1.est-f1.est.old)**2),

sum((f2.est-f2.est.old)**2),

sum((f3.est-f3.est.old)**2))

}

# for prediction of f3 on new grid, we need to refit which specifies the

# rk function rk=periodic. rk= a exist matrix will not work

y.tmp <- thick-f1.tmp$fit

f3.tmp <- ssr(I(y.tmp/f2.est)~-1,

rk=periodic((max(Arosa$t)-min(Arosa$t))*z),

spar="m",weights=f2.est)

# calculate fits for the plot.bCI function.

# Note we inflate the posterior variances via degrees of freedom

p.ozone.fit15.f1 <- predict(f1.tmp,terms=matrix(c(1,1,1,1,1,0,0,0,1),ncol=3,

byrow=T))

p.ozone.fit15.f1$pstd <- p.ozone.fit15.f1$pstd*sqrt((length(thick)-

f1.tmp$df)/(length(thick)-f1.tmp$df-f2.tmp$df-f3.tmp$df+1))

p.ozone.fit15.f2 <- predict(f2.tmp,terms=matrix(c(1,1,1,1,1,0,0,0,1),ncol=3,

byrow=T))

p.ozone.fit15.f2$fit <- p.ozone.fit15.f2$fit/f3.est

p.ozone.fit15.f2$pstd <- p.ozone.fit15.f2$pstd*sqrt((length(thick)-

f2.tmp$df)/(length(thick)-f1.tmp$df-f2.tmp$df-f3.tmp$df+1))/abs(f3.est)

grid4 <- data.frame(z=seq(0,1/(max(Arosa$t)-min(Arosa$t)),len=100))

p.ozone.fit15.f3 <- predict(f3.tmp,grid4)

p.ozone.fit15.f3$pstd <- p.ozone.fit14.f3$pstd*sqrt((length(thick)-

49



f3.tmp$df)/(length(thick)-f1.tmp$df-f2.tmp$df-f3.tmp$df+1))

csyear

f1

0 0.2 0.4 0.6 0.8 1

32
0

32
5

33
0

33
5

34
0

34
5

35
0 overall

0 0.2 0.4 0.6 0.8 1

32
5

33
0

33
5

34
0

34
5

35
0 parametric

0 0.2 0.4 0.6 0.8 1−
15

−
10

−
5

0
5

10
15

smooth

Figure 17: Estimated f1 (overall), and its projections to H0 (parametric) and H1 (smooth). Dotted
lines are 95% Bayesian confidence intervals.

csyear

f2

0 0.2 0.4 0.6 0.8 1

45
50

55

overall

0 0.2 0.4 0.6 0.8 1

45
50

55

parametric

0 0.2 0.4 0.6 0.8 1

−
0.

5
0

0.
5

1

smooth

Figure 18: Estimated f2 (overall), and its projections to H0 (parametric) and H1 (smooth). Dotted
lines are 95% Bayesian confidence intervals.

Figures 17, 18 and 19 show the estimated functions and their projections. Yearly average thickness
f1 and amplitude f2 have similar trends as before. f3 is different from a sinusoidal function, even
though the difference is small.

To enforce the constraint f2 ≥ 0 in model (68), we consider the following model

thickness(csmonth, csyear)

= f1(csyear) + exp(f2(csyear))f3(csmonth) + ε(csmonth, csyear), (69)

where f1 ∈ W2([0, 1]) and f3 ∈ W2(per) ª {1}. Since f3 is close to a sinusoidal function, we use the
L-spline with L = D2 + (2π)2. For identifiability, we remove the constant functions from the model
space for f2: f2 ∈ W2([0, 1]) ª {1}.

> S3 <- cubic(z)

> f3.tmp <- ssr(thick~1,rk=S3,data=Arosa,spar="m")

> f3.ini <- as.vector(S3%*%f3.tmp$rkpk.obj$c)

50



0.0 0.2 0.4 0.6 0.8 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

csmonth

f3

Figure 19: Solid line is the estimated f3. Dotted lines are 95% Bayesian confidence intervals. Dashed
line is the sine function.

> ozone.fit16 <- nnr(thick~f1(csyear)+exp(f2(csyear))*f3(csmonth),

func=list(f1(x)~list(~I(x-.5),cubic(x)),

f2(x)~list(~I(x-.5)-1,cubic(x)),

f3(x)~list(~sin(2*pi*x)+cos(2*pi*x)-1,

lspline(x,type="sine0"))),

data=Arosa,

start=list(f1=mean(thick),f2=0,f3=f3.ini),

control=list(converg="coef"))

> ozone.fit16

Nonlinear Nonparametric Regression Model Fit by Gauss-Newton Method

Model: thick ~ f1(csyear) + exp(f2(csyear)) * f3(csmonth)

Data: Arosa

GML estimate(s) of smoothing parameter(s): 2.081637e-07 1.930501e-03 1.053201e-06

Equivalent Degrees of Freedom (DF): 34.20186

Residual standard error: 15.62308

Number of Observations: 518

Converged after 7 iterations

> x <- seq(0,1,len=50)

> u <- seq(0,1,len=50)

> p.ozone.fit16 <- intervals(ozone.fit16, newdata=list(csyear=x,csmonth=u),

terms=list(f1=matrix(c(1,1,1,1,1,0,0,0,1),nrow=3,byrow=T),

f2=matrix(c(1,1,1,0,0,1),nrow=3,byrow=T),

51



f3=matrix(c(1,1,1,1,1,0,0,0,1),nrow=3,byrow=T)))

csyear

f1

0 0.2 0.4 0.6 0.8 1

32
0

33
0

34
0

35
0

overall

0 0.2 0.4 0.6 0.8 1

33
0

33
5

34
0

34
5

parametric

0 0.2 0.4 0.6 0.8 1

−
10

0
10

20

smooth

Figure 20: Estimated f1 (overall), and its projections to H0 (parametric) and H1 (smooth). Dotted
lines are 95% Bayesian confidence intervals.

csyear

f2

0 0.2 0.4 0.6 0.8 1

−
0.

2
−

0.
1

0
0.

1
0.

2
0.

3

overall

0 0.2 0.4 0.6 0.8 1

−
0.

2
−

0.
1

0
0.

1
0.

2

parametric

0 0.2 0.4 0.6 0.8 1

−
0.

2
−

0.
1

0
0.

1
0.

2

smooth

Figure 21: Estimated f2 (overall), and its projections to H0 (parametric) and H1 (smooth). Dotted
lines are 95% Bayesian confidence intervals.

Estimated functions and their projections are shown in Figures 20, 21 and 22. They are similar to
previous estimates.

8.2 Global Climate Data

We downloaded this data set from the Carbon Dioxide Information Analysis Center at Oak Ridge
National Laboratory (http://cdiac.ESD.ORNL.GOV/ftp/ndp020). As in Wahba and Luo (1996), we
use the averages of winter (December, January and February) temperatures in 1981 from n = 690
stations (Wahba and Luo (1996) used n = 725 stations). The data also contains geological locations
of these stations in terms of longitude (long.degree) and latitude (lat.degree). We use this data
set to illustrate how to fit a spline on the sphere. We first made the following transformations:
long = long.degree ∗ π/180 + π and lat = lat.degree ∗ π/180. Then 0 ≤ long ≤ 2π and
−π/2 ≤ lat ≤ π/2.

> attach(climate)

52



csmonth

f3

0 0.2 0.4 0.6 0.8 1

−
60

−
40

−
20

0
20

40

overall

0 0.2 0.4 0.6 0.8 1

−
40

−
20

0
20

40

parametric

0 0.2 0.4 0.6 0.8 1

−
10

−
5

0
5

10

smooth

Figure 22: Estimated f3 (overall), and its projections to H0 (parametric) and H1 (smooth). Dotted
lines are 95% Bayesian confidence intervals.

> climate.fit <- ssr(temp~1, rk=sphere(cbind(long,lat)), data=climate)

> climate.fit

Smoothing spline regression fit by GCV method

Call: ssr(formula = temp ~ 1, rk = sphere(cbind(long, lat)), data = climate)

GCV estimate(s) of smoothing parameter(s) : 1.293621e-05

Equivalent Degrees of Freedom (DF): 210.993

Estimate of sigma: 2.270291

Number of Observations: 690

> long.grid <- seq(0,2*pi,len=60)

> lat.grid <- seq(-pi/2,pi/2,len=60)

> p.climate <- predict(climate.fit,expand.grid(long=long.grid,lat=lat.grid))

The contour plot of the predicted values is shown in Figure 23.

8.3 United States Historical Climate Data

We downloaded this data set from the Carbon Dioxide Information Analysis Center at Oak Ridge
National Laboratory (http://cdiac.ESD.ORNL.GOV/ftp/ndp019). The data contains mean monthly
temperature from 1890 to 1996 from 1221 stations in US (note that this data set has been updated
on this site since we downloaded it five years ago), geological locations of these stations in terms of
longitude (long) and latitude (lat). We use this data set to illustrate how to fit periodic spline,
thin-plate spline, SS ANOVA and NNR models. We use data from 1961 to 1990 from 48 stations in
Texas only. The data is saved as TXtemp.

We first fit a periodic spline, compute the estimates without the constant term (yearly mean) and
its amplitude for each station.

> data(TXtemp)

> TXtemp$cm<- (TXtemp$month-0.5)/12

> amp <- NULL

53



Longitude

La
tit

ud
e

-100 0 100

-5
0

0
50

-40
-35

-30
-25-20-15-10-5
 0

5

5

10

10

15

15

20

20

25

25

2525 30

F
igu

re
23:

C
on

tou
r

p
lot

of
glob

al
average

W
in

ter
tem

p
eratu

re
in

1981.

54



> for(i in 1:48){

tmpfit<- ssr(mmtemp~1, rk=periodic(cm), spar="m",

data=TXtemp[TXtemp$stacod==unique(TXtemp$stacod)[i]&

TXtemp$mmtemp!=-99.99,])

p.tmpfit <- predict(tmpfit, terms=c(0,1), pstd=F,

newdata=data.frame(cm=seq(0,1,len=100)))$fit

amp <- c(amp,max(abs(p.tmpfit)))

}

Figure 24 shows the estimated amplitudes on the logarithm scale plotted against longitude and
latitude. It is clear that the middle and northern parts of Texas tend to have larger amplitudes (hotter
Summer and colder Winter).

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o
o

o

o

o

o

o
o

o

o

longitude

lo
g(

am
pl

itu
de

)

-106 -102 -98 -96 -94

2.
8

2.
9

3.
0

3.
1

3.
2

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o
o

o

o

o

o

o
o

o

o

latitude

lo
g(

am
pl

itu
de

)

26 28 30 32 34 36

2.
8

2.
9

3.
0

3.
1

3.
2

Figure 24: Plot of log(amplitude) vs longitude (left) and latitude (right). Circles are observations and
solid lines are cubic spline fits.

We now fit a thin-plate spline with d = 2 and m = 2 to model the effect of longitude and
latitude on the log(amplitude):

> loc <- TXtemp[TXtemp[,4]==1961&TXtemp[,6]==1,2:3]

> data <- data.frame(amp=log(amp),lat=loc[,1],long=loc[,2])

> tx.fit1 <- ssr(amp~long+lat,rk=tp.pseudo(list(long,lat)),data=data, spar="m")

> i <- interp(data$long,data$lat,data$amp)

> grid1 <- list(long=i$x,lat=i$y)

> p.tx.fit1 <- predict(tx.fit1,expand.grid(grid1),pstd=F)

The contour and 3-d plots of the fit are shown in Figure 25.

We can use SS ANOVA or NNR models to investigate seasonal trend (temporal) and location
effect (spatial) together. For this purpose, we first compute average mean monthly temperature from
1996-1990 for each station.

> y <- gapply(TXtemp, which=5, FUN=function(x) mean(x[x!=-99.99]),

group=TXtemp$stacod*TXtemp$month)

> tx.dat <- data.frame(y=as.vector(t(matrix(y,48,12,byrow=F))))

> tx.dat$month<-rep((1:12-0.5)/12, 48)

55



2.8

2.9

2.9

3
3.05

3.05

3.1
3.1

3.15

2.8

2.8
2.8

2.85

2.85

2.9

2.9

2.95

2.95

3

3.05
3.05

3.05

3.1
3.15

3.2

-106 -104 -102 -100 -98 -96

longitude28
30

32
34

36

latitude

2.
72

.8
2.

9
3

3.
1

3.
2

3.
3

lo
g(

am
pl

itu
de

)
Figure 25: Left: contour plot of raw data (dotted lines) and TPS fit (solid lines). Right: 3-d plot of
the TPS fit.

> tx.dat$lat<-rep(TXtemp$lat[seq(1, nrow(TXtemp),by=360)] ,rep(12,48))

> tx.dat$long<-rep(TXtemp$long[seq(1, nrow(TXtemp),by=360)] ,rep(12,48))

> tx.dat$stacod<-rep(TXtemp$stacod[seq(1, nrow(TXtemp),by=360)] ,rep(12,48))

Denote t1 = month, x1 = longitude, x2 = latitude, and t2 = (x1, x2). We model month (t1) effect
using a periodic spline, and spatial (t2) effect using a TPS. Then we have the following SS ANOVA
model:

y(t1, t2) = µ + βx1 + γx2 + s1(t1) + s2(t2) +

sl112(t1, x1) + sl212(t1, x2) + ss12(t1, t2) + ε(t1, t2), (70)

where components on the right hand side are constant, linear main effect of x1, linear main effect of
x2, smooth main effect of t1, smooth main effect of t2, smooth-linear interaction between t1 and x1,
smooth-linear interaction between t1 and x2, and smooth-smooth interaction between t1 and t2.

> tx.fit3 <- ssr(y~long+lat, data=tx.dat, spar="m",

rk=list(periodic(month), tp(list(long,lat)),

rk.prod(periodic(month),kron(long)),

rk.prod(periodic(month),kron(lat)),

rk.prod(periodic(month),tp(list(long,lat)))))

> tx.fit3

...

GML estimate(s) of smoothing parameter(s) : 8.184394e-06 2.426733e-02

1.076039e-01 5.558457e-02 2.683768e-04

Equivalent Degrees of Freedom (DF): 345.5728

Estimate of sigma: 0.117142

If mean monthly temperature profiles from all stations have the same shape except a vertical shift

56



and scale transformation, we may consider the following NNR model

y(t1, t2) = g1(t2) + exp(g2(t2)) × g3(t1) + ε(t1, t2), (71)

where y(t1, t2) is the mean temperature in month t1 of the station with longitude and latitude t2. g1,
g2 and g3 are three unknown functions. g3 represents seasonal trend. g1 captures average climate
differences between stations, and g2 captures differences in the seasonal trend between stations. We
will refer exp(g2(t2)) as the amplitude. A bigger amplitude corresponds to a bigger seasonal variation.
We model g1 and g2 using TPS’s. Since g3 is periodic and is close to a sinusoidal function, we use the
L-spline with L = D2 + (2π)2. To make model (71) identifiable, we use the following side conditions:
(a)

∫ 1
0 g2(t)dt = 0, and (b)

∫ 1
0 g3(t)dt = 0. Therefore, the model spaces for g1, g2 and g3 are TPS,

TPS ª {1} and W2(per) ª {1} respectively.

> S3 <- periodic(tx.dat$month)

> f3.tmp <- ssr(y~1,rk=S3,data=tx.dat,spar="m")

> f3.ini <- as.vector(S3%*%f3.tmp$rkpk.obj$c)

> tx.fit4 <- nnr(y~f1(long,lat)+exp(f2(long,lat))*f3(month),

func=list(f1(x,z)~list(~x+z,tp(list(x,z))),

f2(x,z)~list(~x+z-1,tp(list(x,z))),

f3(x)~list(periodic(x))),

data=tx.dat,start=list(f1=mean(y),f2=0,f3=f3.ini))

> tx.fit4

Nonlinear Nonparametric Regression Model Fit by Gauss-Newton Method

Model: y ~ f1(long, lat) + exp(f2(long, lat)) * f3(month)

Data: tx.dat

GCV estimate(s) of smoothing parameter(s): 2.576027e-06 1.736111e-03 4.471411e-07

Equivalent Degrees of Freedom (DF): 95.47625

Residual standard error: 0.9433764

Number of Observations: 576

Converged after 3 iterations

Contour plots of the estimates of g1 and g2 are shown in Figure 26. There is clear spatial effects
to the mean temperature and amplitude. Southern part of the state is warmer and has less seasonal
variation.

We now discuss two approaches two check the NNR model. We have fitted each station separately
and saved the estimates without yearly mean in p.tx.fit1. One way to check if mean monthly
temperature profiles from all stations have the same shape after removing yearly mean is to plot the
estimates from one station against another to see if the points fall on a straight line. We rescale
estimates from all stations such that all of them have amplitudes equal one. We then calculate
Euclidean distances between stations. We select paired stations which have distances correspond to
the 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95% and 99% quantile of all possible paired stations. Figure
27 shows plots of these estimates for these selected stations. Some deviation from the straight line
can be seen when distance becomes large.

> d <- dist(diag(1/amp)%*%t(p.tx.fit1))

> st <- NULL

57



57

59

61

63

63
63

6365

65

67
67

67

69

71

-0.2
-0.2

-0.15

-0.15

-0.15

-0.1
-0.05

 0

0.05

0.1

0.15

0.15

Figure 26: Contour plots of the estimates of g1 (left) and g2 (right).

> for (i in 1:47) { for (j in (i+1):48) st <- rbind(st,c(i,j))}

> ord <- order(d)

> tmp <- cbind(d[ord],st[ord,])

It is easy to see that model (70) reduces to the model (71) iff

f12 = [exp(g2)/

∫

exp(g2)dx2 − 1]f2. (72)

Thus another way to check the NNR model (71), or equivalently condition (72), is to compute estimates
of f2 and f12 for all stations, and then plot f2 against f12 to see if the points fall on a straight line.

> grid2 <- data.frame(month=rep(seq(0,1,len=40), 48),

lat=rep(TXtemp$lat[seq(1,nrow(TXtemp),by=360)] ,rep(40,48)),

long=rep(TXtemp$long[seq(1, nrow(TXtemp),by=360)] ,rep(40,48)))

> p.tx.fit3.f2 <- predict(tx.fit3,grid2[1:40,],

terms=c(0,0,0,1,0,0,0,0),pstd=F)$fit

> p.tx.fit3.f12 <- predict(tx.fit3,grid2,

terms=c(0,0,0,0,1,1,1,1),pstd=F)$fit

Such a plot is shown in Figure 28 which indicates certain deviation from the straight line.

For the purpose of illustration, we now fit the following additive model

y(t1, t2) = µ + βx1 + γx2 + s1(t1) + s2(t2) + ε(t1, t2).

> tx.fit5 <- ssr(y~long+lat, rk=list(periodic(month), tp(list(long,lat))),

data=tx.dat, spar="m")

58



station  13

st
at

io
n 

 2
6

-20 -10 0 10 20

-2
0

0
10

20

ooooooooooo
ooooooooooooo ooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooo

station  13

st
at

io
n 

 4
8

-20 -10 0 10 20

-2
0

0
10

20

oooooooooo
ooooooooooooo ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooo

station  29

st
at

io
n 

 3
1

-20 -10 0 10 20

-2
0

0
10

20

ooooooooooo
oooooooooo o oo oooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooo

station  11
st

at
io

n 
 4

7

-20 -10 0 10 20

-2
0

0
10

20

ooooooooooo
ooooooooo o o o o o o o ooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooo

station  24

st
at

io
n 

 2
9

-20 -10 0 10

-2
0

0
10

20

oooooooooooooooooooooo o o o o o o oooooooooooooooooooo
oooooooo

oooooooooooooooooooooooooooooooooooooooooooo

station  38

st
at

io
n 

 4
2

-20 -10 0 10

-1
5

-5
5

oooooooooo
oooooooo o o o o o o ooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooo

station  14

st
at

io
n 

 2
4

-15 -10 -5 0 5 10

-2
0

0
10

oooooooooo
oooooo o o o o o o o o o o ooooooooooooooooooo

ooooooooo
oooooooooooooooooooooooooooooooooooooooooooooo

station  42

st
at

io
n 

 4
8

-15 -10 -5 0 5 10

-2
0

0
10

20

oooooooooooooo o o o o o o o o o o o o o oooooooooo
oooo

oooo
oooo

oooooooooooooooooooooooooooooooooooooooooooooooooo

station  9

st
at

io
n 

 2
2

-20 -10 0 10 20

-1
5

-5
5

oooooooooo
ooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

station  9

st
at

io
n 

 4
2

-20 -10 0 10 20

-1
5

-5
5

oooooooooo
ooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Figure 27: Plot of the centered and scaled estimates for the selected stations.

59



-40

-20

0

20

40

60
station

-30 -10 10 30

station station

-30 -10 10 30

station station

-30 -10 10 30

station station

-30 -10 10 30

station

station station station station station station station

-40

-20

0

20

40

60
station

-40

-20

0

20

40

60
station station station station station station station station

station station station station station station station

-40

-20

0

20

40

60
station

-40

-20

0

20

40

60
station station station station station station station station

station station

-30 -10 10 30

station station

-30 -10 10 30

station station

-30 -10 10 30

station

-40

-20

0

20

40

60
station

-30 -10 10 30

f2

f1
2

Figure 28: Plot of f1 vs f12 for all stations.

60



...

GML estimate(s) of smoothing parameter(s) : 0.05823508 16.36685971

Equivalent Degrees of Freedom (DF): 41.59342

Estimate of sigma: 1.773092

Number of Observations: 576

It is obvious that above additive model is a special case of the NNR model (71) with g2 = 0. We
can compare three models using a model selection procedure such as GCV, AIC or BIC.

> n <- 576

> rss1 <- sum(tx.fit3$resi**2)

> rss2 <- sum(tx.fit4$resi**2)

> rss3 <- sum(tx.fit5$resi**2)

> gcv1 <- rss1/n/(1-tx.fit3$df/n)**2

> gcv2 <- rss2/n/(1-tx.fit4$df$f/n)**2

> gcv3 <- rss3/n/(1-tx.fit5$df/n)**2

> aic1 <- n*log(rss1/n)+2*tx.fit3$df

> aic2 <- n*log(rss2/n)+2*tx.fit4$df$f

> aic3 <- n*log(rss3/n)+2*tx.fit5$df

> bic1 <- n*log(rss1/n)+log(n)*tx.fit3$df

> bic2 <- n*log(rss2/n)+log(n)*tx.fit4$df$f

> bic3 <- n*log(rss3/n)+log(n)*tx.fit5$df

> print(c(rss1,rss2,rss3))

[1] 3.161981 428.052072 1680.096971

> print(c(gcv1,gcv2,gcv3))

[1] 0.0343016 1.0672903 3.3885449

> print(c(aic1,aic2,aic3))

[1] -2306.88183 19.73069 699.79434

> print(c(bic1,bic2,bic3))

[1] -801.5293 435.1371 880.9798

All model selection procedures choose the SS ANOVA model (70).

8.4 Chickenpox Epidemic

This data set, downloaded from http://www-personal.buseco.monash.edu.au/˜hyndman /TSDL/,
contains monthly number of reported cases of chickenpox in New York City from 1931 to the first
six months of 1972. It has been analyzed by several authors to investigate dynamics in an epidemic
(Yorke and London 1973, Schaffer and Kot 1985). Figure 29 shows time series plots of square root of
monthly cases. We illustrate how to use the SS ANOVA and NNR models to investigate long term
trend over years, seasonal trend and their interactions.

Denote y as the square root of reported cases in month t1 of year t2. Both t1 and t2 are transformed
into the interval [0, 1]. We first consider an additive model

y(t1, t2) = µ + βt2 + s1(t1) + s2(t2) + ε(t1, t2), (73)

and a full SS ANOVA model

y(t1, t2) = µ + βt2 + s1(t1) + s2(t2) + sl112(t1, t2) + ss12(t1, t2), (74)

61



year

sq
rt

(c
ou

nt
)

0
10

20
30

40
50

60

31 36 41 46 51 56 61 66 71

year

sq
rt

(c
ou

nt
)

0
10

20
30

40
50

60

31 36 41 46 51 56 61 66 71

year

sq
rt

(c
ou

nt
)

0
10

20
30

40
50

60

31 36 41 46 51 56 61 66 71

Figure 29: Plots of the square root of monthly cases (dotted lines) and fits (dotted lines) from models
(73) (top), (74) (middle) and (75) (bottom).

62



where µ, βt2, s1(t1), s2(t2), sl112(t1, t2) and ss12(t1, t2) are respectively constant, linear main effect
of year, smooth main effect of month, smooth main effect of year, smooth-linear interaction between
month and year, and smooth-smooth interaction between month and year. We model month (t1) effect
using a periodic spline and year (t2) effect using a cubic spline.

> data(chickenpox)

> chickenpox$ct<- sqrt(chickenpox$count)

> chickenpox$csmonth<- (chickenpox$month-0.5)/12

> chickenpox$csyear<- ident(chickenpox$year)

> chickenpox.fit1 <- ssr(ct~csyear, rk=list(periodic(csmonth),cubic(csyear)),

data=chickenpox)

> chickenpox.fit1

...

GCV estimate(s) of smoothing parameter(s) : 0.189468039 0.001004518

Equivalent Degrees of Freedom (DF): 46.32076

Estimate of sigma: 3.932079

Number of Observations: 498

> chickenpox.fit2 <- update(chickenpox.fit1,

rk=list(periodic(csmonth),cubic(csyear),

rk.prod(periodic(csmonth),kron(csyear)),

rk.prod(periodic(csmonth),cubic(csyear))))

> chickenpox.fit2

...

GCV estimate(s) of smoothing parameter(s) : 3.175017e-02 1.703363e-04

3.253160e-01 2.387995e-07

Equivalent Degrees of Freedom (DF): 278.5618

Estimate of sigma: 1.975239

Number of Observations: 498

The seasonal variation was mainly caused by two factors: (a) social behavior of children who
made close contacts when school was in session; and (b) temperature and humidity which may affect
the survival and transmission of dispersal stages (Yorke and London 1973, Schaffer and Kot 1985).
Thus the seasonal variations were similar over the years. In the following NNR model we assume
that the seasonal variation has the same shape after vertical shift and vertical scale transformations.
Specifically we assume that

y(t1, t2) = g1(t2) + exp(g2(t2)) × g3(t1) + ε(t1, t2), (75)

where g1, g3 and g2 are three unknown functions which represent respectively yearly mean cases,
seasonal trend in a year and the magnitude of the seasonal variation for a particular year. We
refer exp(g2(t2)) as the amplitude. A bigger amplitude corresponds to a bigger seasonal variation.
Thus in addition to being more parsimonious than the SS ANOVA model (74), the NNR model
(75) has component functions with nice interpretations. We model g1 and g2 using cubic splines.
It has been recognized that a simple sinusoidal model may be inappropriate (Earn, Rohani, Bolker

63



and Gernfell 2000). Since g3 is periodic and is close to a sinusoidal function, we use the L-spline
with L = D2 + (2π)2. To make model (75) identifiable, we use the following side conditions: (a)
∫ 1
0 g2(t)dt = 0, and (b)

∫ 1
0 g3(t)dt = 0. Therefore, the model spaces for g1, g2 and g3 are W2[0, 1],

W2[0, 1] ª {1} and W2(per) ª {1} respectively.

> S3 <- periodic(chickenpox.data$month)

> f3.tmp <- ssr(y~1,rk=S3,data=chickenpox.data,spar=’’m’’)

> f3.ini <- as.vector(S3%*%f3.tmp$rkpk.obj$c)

> chickenpox.fit3 <- nnr(y~f1(year)+exp(f2(year))*f3(month),

func=list(f1(x)~list(~I(x-.5),cubic(x)),

f2(x)~list(~I(x-.5)-1,cubic(x)),

f3(x)~list(~sin(2*pi*x)+cos(2*pi*x)-1,

lspline(x,type=’’sine0’’))),

data=chickenpox.data,start=list(f1=mean(y),f2=0,f3=f3.ini),

control=list(converg=’’coef’’),spar=’’m’’)

> chickenpox.fit3

...

GML estimate(s) of smoothing parameter(s): 7.7261e-07 1.7787e-03 2.0090e-07

Equivalent Degrees of Freedom (DF): 27.85445

Residual standard error: 3.67597

Number of Observations: 498

Converged after 4 iterations

We can compare three models using a model selection procedure such as GCV, AIC or BIC.

> n <- 498

> rss1 <- sum(chickenpox.fit1$resi**2)

> rss2 <- sum(chickenpox.fit2$resi**2)

> rss3 <- sum(chickenpox.fit3$resi**2)

> gcv1 <- rss1/n/(1-chickenpox.fit1$df/n)**2

> gcv2 <- rss2/n/(1-chickenpox.fit2$df/n)**2

> gcv3 <- rss3/n/(1-chickenpox.fit3$df$f/n)**2

> aic1 <- n*log(rss1/n)+2*chickenpox.fit1$df

> aic2 <- n*log(rss2/n)+2*chickenpox.fit2$df

> aic3 <- n*log(rss3/n)+2*chickenpox.fit3$df$f

> bic1 <- n*log(rss1/n)+log(n)*chickenpox.fit1$df

> bic2 <- n*log(rss2/n)+log(n)*chickenpox.fit2$df

> bic3 <- n*log(rss3/n)+log(n)*chickenpox.fit3$df$f

> print(c(gcv1,gcv2,gcv3))

> [1] 17.04683 8.85435 14.31334

> print(c(aic1,aic2,aic3))

> [1] 1407.7146 826.9648 1323.6549

> print(c(bic1,bic2,bic3))

> [1] 1602.753 1999.877 1440.939

Thus the GCV and AIC criteria select the SS ANOVA model, and the BIC criteria selects the more
parsimonious NNR model. The estimates of g1 and g2 and their 95% confidence intervals are shown in
Figure 30. We also superimposed yearly averages on the plot of g1 and the logarithm of scaled ranges

64



on the plot of g2. The scaled range of a specific year was calculated as the differences between the
maximum and the minimum monthly number of cases divided by the range of the estimated seasonal
trend g3. It is clear that g1 captures the long term trend in the mean and g2 captures the long term
trend in the range of seasonal variation. From Figure 29, the SS ANOVA model (74) captures local
trend, particularly biennial pattern from 1945 to 1955, better than the NNR model (75). From the
estimate of g1, we can see that yearly averages peaked in the 1930s and 1950s, and gradually decreased
in the 1960s after the introduction of mass vaccination. The amplitude reflects the seasonal variation
in transmission rate. From the estimate of g2 in Figure 30, we can see that magnitude of the seasonal
variation peaked in the 1950s and then declined in the 1960s, possibly as a result of changing public
health conditions including mass vaccination. Figure 31 shows the estimate of the seasonal trend g3 and
its projections onto the null space H30 (the simple sinusoidal model) and the orthogonal complement
of the null space H31. Since the projection onto the complement space is significantly different from
zero, we conclude that a simple sinusoidal model does not provide an accurate approximation.

year

g1
15

20
25

30

31 41 51 61 71

o
o

o
o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o
o

o

o

year

g2
−

0.
8

−
0.

4
0.

0
0.

4

31 41 51 61 71

o

o

o

o o

o

o

o

o

o

o

o

o

o o
o

o

o

o

o

o

o

o

o o

o o o o

o
o

o
o

o

o

o

o

o

o

o

Figure 30: Left: plot of yearly averages (circles), estimate of g1 (solid line) and its 95% confidence
intervals (dotted lines). Right: plot of yearly scaled ranges on logarithm scale (circles), estimate of g2

(solid line) and its 95% confidence intervals (dotted lines).

8.5 Lake Acidity Study

This data set was derived by Douglas and Delampady (1990) from the Eastern Lakes Survey of 1984.
It contains measurements of 1789 lakes in three Eastern US regions: Northeast, Upper Midwest and
Southeast. Of interest is the dependence of the water pH level (ph) on the calcium concentration in
log10 milligrams per liter (t1) and the geographical location (t2 = (x1, x2) where x1=latitude and
x2=longitude). Gu and Wahba (1993a) analyzed this data set using SS ANOVA models. As in Gu
and Wahba (1993a), we use a subset of 112 lakes in the southern Blue Ridge mountains area.

We use this data set to illustrate how to fit a cubic spline, a cubic spline with correlated random
errors, a SLM and an SS ANOVA model.

First, we fit a cubic spline to ph using one variable calcium (t1)

pH(t1) = f(t1) + ε(t1)

65



month

g3

−15

−10

−5

0

5

10

15

400 500 600 700 800

overall parametric

400 500 600 700 800

400 500 600 700 800

smooth

Figure 31: Estimated g3 (overall), and its projections to H0 (parametric) and H1 (smooth). Dotted
lines are 95% Bayesian confidence intervals.

where f ∈ W2([0, 1]).

> acid.fit1 <- ssr(ph~t1, rk=cubic(t1), data=acid, scale=T)

> summary(acid.fit1)

...

GCV estimate(s) of smoothing parameter(s) : 3.84e-06

Equivalent Degrees of Freedom (DF): 8.21

Estimate of sigma: 0.281

> anova(acid.fit1)

Testing H_0: f in the NULL space

test.value simu.size simu.p-value

LMP 0.003634651 100 0.04

GCV 0.008239078 100 0.02

Both p-values from the LMP and GCV tests are small, indicating that a simple linear model is
not sufficient to describe the relationship. This can be confirmed by looking at the fitted function and
its projections onto H0 and H1. A linear model is equivalent to the projection onto H1 being zero.
The following statements compute posterior means and standard deviations for the projections onto
H0 with terms=c(1,1,0), the projections onto H1 with terms=c(0,0,1), and the overall fit with
terms=c(1,1,1).

> grid <- data.frame(t1=seq(min(acid$t1), max(acid$t1), len=100))

> tm <- matrix(c(1,1,0,0,0,1,1,1,1), ncol=3, byrow=T)

> p.acid.fit1 <- predict(acid.fit1, grid, terms=tm)

Figure 32 shows the fitted function and its projections. The nonlinear part is small, but different
from zero.

pH observations close in geographic locations are often correlated. Suppose that we want to use
spherical spatial correlation structure with nugget effect for the variable location t2 = (x1, x2). That

66



Calcium

pH

-0.5 0.0 0.5 1.0 1.5

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

o
o

oo
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o o

oo o

oo

o

oo o

o
o

o

o

o

oo

oo
o

o

o
o

oo
oo

o

o

o

oo

o o

o

o

o

o

oo

o

oo

o
o

o

o

o o

o

o

o

oo
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o o

o

o

o

o

o

o

Overall function

Calcium

pH
-0.5 0.0 0.5 1.0 1.5

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

Linear part

Calcium

pH

-0.5 0.0 0.5 1.0 1.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

Smooth part

Figure 32: Left: circles are observations, solid line is the cubic spline fit. Middle: solid line is the
projection of the overall function to the null space H0. Right: solid line is the projection of the overall
function to the space H1. Dotted lines are 95% Bayesian confidence intervals.

is, regard random errors ε as a function of t2, and assume

Cov(ε(s2), ε(t2)) =

{

σ2(1 − c)[1 − 1.5d(s2, t2)/r − .5d2(s2, t2)/r
2], 0 < d(s2, t2) ≤ r,

σ2, d(s2, t2) = 0,

where c is the nugget effect, d(s2, t2) is the Euclidean distance between s2 and t2, and r is the range
parameter.

> acid$s1 <- (acid$t1-min(acid$t1))/diff(range(acid$t1))

> acid.fit2 <- ssr(ph~s1, rk=cubic(s1), data=acid,

corr=corSpher(form=~x1+x2,nugget=T), spar="m")

> acid.fit2

...

Coefficients (d):

(Intercept) s1

6.221757 1.264431

GML estimate(s) of smoothing parameter(s) : 4.645508

Equivalent Degrees of Freedom (DF): 2.000284

Estimate of sigma: 0.2994075

Correlation structure of class corSpher representing

range nugget

0.03646616 0.68530949

We plot in Figure 33 fitted curves from acid.fit1, acid.fit2 and acid.fit5. Notice the effect of
the correlation on the smoothing parameter and the fit. Equivalent degrees of freedom for f decreased
from 8.21 to 2.00. The new fit is linear. The smaller smoothing parameter in the first fit might be
caused by the spatial correlation.

We can also model the effect of location directly as a covariate. We consider two approaches to

67



Calcium(log10 mg/L)

pH

-0.5 0.0 0.5 1.0 1.5

6.
0

6.
5

7.
0

7.
5

8.
0

o
o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o o

oo o

oo

o

o
o o

o
o

o

o

o

o
o

oo
o

o

o
o

oo
oo

o

o

o

oo

o o

o

o

o

o

oo

o

oo

o
o

o

o

o o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o o

o

o

o

o

o

o

fit1
fit2
fit5

Figure 33: Points are observations. Lines are fitted curves from three models.

model location effect: use random effects with exponential spatial correlation structure (similar to
Kriging), and use thin plate splines.

For the first approach, we consider

pH(t1, t2) = f(t1) + β1x1 + β2x2 + u(t2) + ε(t1, t2), (76)

where f ∈ W2([0, 1]), u(t2) is a spatial process and ε(t1, t2) are random errors independent of the
spatial process. Model (76) separates the contribution of the spatial correlation to random errors in
acid.fit2 from other sources, and regard the spatial process as part of the signal. To show different
options, we now assume an exponential correlation structure. Specifically, we assume u(t2) in (76) is
a mean zero process with

Cov(u(s2), u(t2)) =

{

σ2(1 − c) exp(−d(s2, t2)/r), d(s2, t2) > 0
σ2, d(s2, t2) = 0,

where c, d(s2, t2) and r are the same as those defined in the spherical correlation structure. Note that
we include the linear effects of location in the fixed effects. This will allow us to compare with the
fit of a thin plate spline model later.

Denote t as the vector of design points for t2. Let u(t) be the vector of the u process evaluated
at design points. u(t) are random effects and u(t) ∼ N(0, σ2D), where D depends parameters c and
r. Again, the SLM model (76) cannot be fitted directly using slm since D depends on the range
parameter r nonlinearly. We fit model (76) in two steps. We first regard u(t) as part of random error,
estimate the range parameter, and calculate the estimated covariance matrix without nugget effect:

> temp <- ssr(ph~t1+x1+x2, rk=tp(t1), data=acid,

corr=corExp(form=~x1+x2, nugget=T), spar="m")

> tau <- coef(temp$cor.est, F)

> D <- corMatrix(initialize(corExp(tau[1],form=~x1+x2), data=acid))

68



Consider the estimated D as the true covariance matrix. Then we can calculate the Cholesky
decomposition of D as D = ZZT , and transform the random effects u(t) = Zb, where b ∼ N(0, σ2

1I).
Now we are ready to fit the transformed SLM:

> Z <- chol.new(D)

> acid.fit3 <- slm(ph~t1+x1+x2, rk=tp(t1), data=acid,

random=list(pdIdent(~Z-1)))

> summary(acid.fit3)

...

Coefficients (d):

(Intercept) t1 x1 x2

6.5483884 0.6795706 -8.3694493 2.1135023

GML estimate(s) of smoothing parameter(s) : 0.0005272899

Equivalent Degrees of Freedom (DF): 4.000179

Estimate of sigma: 0.002725062

We then calculate the estimated effect of calcium:

grid1 <- data.frame(t1=seq(min(acid$t1), max(acid$t1), len=100),

x1=min(acid$x1), x2=min(acid$x2))

p.acid.fit3.t1 <- intervals(acid.fit3, grid1, terms=c(0,1,0,0,1))

Suppose that we want to calculate the location effect on grid points s. Let u(s) be the vector of
the u process evaluated at elements in s. Let R = Cov(u(s), u(t)). Then û(s) = RD−1û(t) = RZ−T b̂.

grid2 <- expand.grid(

x1=seq(min(acid$x1)-.001,max(acid$x1)+.001, len=20),

x2=seq(min(acid$x2)-.001,max(acid$x2)+.001, len=20))

newdata <- data.frame(y1=c(acid$x1,grid2$x1), y2=c(acid$x2,grid2$x2))

RD <- corMatrix(initialize(corExp(tau[1], form=~y1+y2), data=newdata))

R <- RD[(length(acid$x1)+1):length(newdata$y1),1:length(acid$x1)]

u.new <- R%*%t(solve(Z))%*%as.vector(acid.fit3$lme.obj$coef$random[[2]])

p.acid.fit3.t2 <- acid.fit3$lme.obj$coef$fixed[3]*grid2$x1+

acid.fit3$lme.obj$coef$fixed[4]*grid2$x2+u.new

Figure 34 plots the estimated main effects of t1 and t2 = (x1, x2) on the left panel.

As the second approach, we consider the same thin plate spline model as in Gu and Wahba (1993a).
Specifically, we use a TPS with d = 1 and m = 2 to model the effect of calcium, and a TPS with
d = 2 and m = 2 to model the effect of location. Then we have the following SS ANOVA model

f(t1, t2) = µ + αt1 + βx1 + γx2 + s1(t1) + s2(t2) + ls12(t1, t2) + sl112(t1, x1) + sl212(t1, x2) + ss12(t1, t2).

Components on the right hand side are constant, linear main effect of t1, linear main effect of x1,
linear main effect of x2, smooth main effect of t1, smooth main effect of t2, linear-smooth interaction
between t1 and t2, smooth-linear interaction between t1 and x1, smooth-linear interaction between t1
and x2, and smooth-smooth interaction between t1 and t2.

> acid.fit4 <- ssr(ph~t1+x1+x2, rk=list(tp(t1), tp(list(x1,x2)),

rk.prod(kron(t1),tp(list(x1,x2))), rk.prod(kron(x1),tp(t1)),

rk.prod(kron(x2),tp(t1)), rk.prod(tp(t1),tp(list(x1,x2)))),

data=acid, spar="m")

> summary(acid.fit4)

69



...

Coefficients (d):

(Intercept) t1 x1 x2

6.555506 0.6235892 -8.783944 1.974596

GML estimate(s) of smoothing parameter(s) : 1.816737e+04

3.600865e-03 2.710276e+01 2.759507e+00 1.992876e+01 1.440841e-01

Equivalent Degrees of Freedom (DF): 10.7211

Estimate of sigma: 0.2560693

Since the smoothing parameters corresponding to the interaction terms are large, it is easy to
check that these interaction terms are small. Thus we reduce to the following additive model with
main effects only

f(t1, t2) = µ + αt1 + βx1 + γx2 + s1(t1) + s2(t2).

> acid.fit5 <- update(acid.fit3, rk=list(tp(t1), tp(list(x1,x2))))

> summary(acid.fit5)

... ...

Coefficients (d):

(Intercept) t1 x1 x2

6.555502 0.6235885 -8.783569 1.974339

GML estimate(s) of smoothing parameter(s) : 6.045750e+03 3.600423e-03

Equivalent Degrees of Freedom (DF): 10.72108

Estimate of sigma: 0.2560684

> grid3 <- data.frame(t1=seq(min(acid$t1), max(acid$t1), len=100),

x1=min(acid$x1), x2=min(acid$x2))

> p.acid.fit5.t1 <- predict(acid.fit5, grid3, terms=c(0,1,0,0,1,0))

> grid4 <- expand.grid(t1=min(acid$t1),

x1=seq(min(acid$x1), max(acid$x1), len=20),

x2=seq(min(acid$x2), max(acid$x2), len=20))

> p.acid.fit5.t2 <- predict(acid.fit5, grid4, terms=c(0,0,1,1,0,1))

Figure 34 plots the estimated main effects of t1 and t2 = (x1, x2) on the right panel. It is seen that
the estimates of the calcium main effects are almost identical. The estimates of the location main
effects have a similar pattern. The estimate from acid.fit5 is smoother.

> grid3 <- data.frame(t1=seq(min(acid$t1), max(acid$t1), len=100),

x1=min(acid$x1), x2=min(acid$x2))

> p.acid.fit5.t1 <- predict(acid.fit5, grid3, terms=c(0,1,0,0,1,0))

> grid4 <- expand.grid(t1=min(acid$t1),

x1=seq(min(acid$x1), max(acid$x1), len=20),

x2=seq(min(acid$x2), max(acid$x2), len=20))

> p.acid.fit5.t2 <- predict(acid.fit5, grid4, terms=c(0,0,1,1,0,1))

70



−0.5 0.0 0.5 1.0 1.5

−0
.5

0.
0

0.
5

1.
0

Calcium(log10 mg/L)

pH

Main effect of calcium from acid.fit3

−0.5 0.0 0.5 1.0 1.5

−0
.5

0.
0

0.
5

1.
0

Calcium(log10 mg/L)

pH

Main effect of calcium from acid.fit5

La
ttit

ud
e

−0.02

0.00

0.02Longitude

−0.02

0.00

0.02

pH

−0.4

−0.2

0.0

0.2

0.4

Main effect of location from acid.fit3

La
ttit

ud
e

−0.02

0.00

0.02Longitude

−0.02

0.00

0.02

pH

−0.4

−0.2

0.0

0.2

0.4

Main effect of location from acid.fit5

Figure 34: Plots of estimated main effects. Left: estimates from acid.fit3. Right: estimates from
acid.fit5. First row: solid lines are the estimated main effects of calcium, and dotted lines are 95%
confidence intervals. Second row: estimated main effects of location.

71



8.6 Wisconsin Epidemiological Study of Diabetic Retinopathy

Wisconsin Epidemiological Study of Diabetic Retinopathy (WESDR) is an epidemiological study of a
cohort of diabetic patients receiving their medical care in an 11-county area in Southern Wisconsin.
Detailed descriptions of the data can be found in Klein, Klein, Moss, Davis and DeMets (1988). A
number of medical, demographic, ocular and other covariates were recorded at the baseline and later
examinations along with a retinopathy score for each eye. As in Wahba et al. (1995), we investigate
how progression of diabetic retinopathy at the first follow-up depends on the following covariates: dur
(duration of diabetes at baseline), gly (glycosylated hemoglobin, a measure of hyperglycemia), and
bmi (body mass index = weight in kg/(height in m)2). As in Wahba et al (1994), we chose a subgroup
of the younger onset consisting of 669 subjects with no or non-proliferative retinopathy at the baseline.
See Wahba et al. (1995) for details of this data set.

We use this data set to illustrate how to fit smoothing spline models for non-Gaussian data. Firstly,
we fit a simple cubic spline

logitP (prg = 1 | bmi) = f(bmi),

where f ∈ W2([0, 1]).

> wesdr.fit1<- ssr(prg~bmi, rk=cubic(bmi), data=wesdr, family="binary",

scale=T, spar="u", varht=1)

> summary(wesdr.fit1)

...

Coefficients (d):

(Intercept) bmi

-1.286666 1.793480

UBR estimate(s) of smoothing parameter(s) : 8.793603e-06

Equivalent Degrees of Freedom (DF): 6.036309

Estimate of sigma: 1

> grid <- data.frame(bmi=seq(min(wesdr$bmi),max(wesdr$bmi),len=100))

> p.wesdr.fit1 <- predict(wesdr.fit1, grid)

Figure 35 shows the fitted probability function and its 95% Bayesian confidence intervals based on
wesdr.fit1.

Wahba et al (1994) reached the following model

logitP (prg = 1 | dur, gly, bmi) = µ + α ∗ gly + β ∗ dur + γ ∗ bmi + s1(dur) + s2(bmi)

+ls12(dur, bmi) + sl12(dur, bmi) + ss12(dur, bmi). (77)

The ssr function and related utility functions can be used for model-building. We omit the details
and fit (77) directly.

wesdr.fit2<- update(wesdr.fit1, prg~dur+gly+bmi+I(dur*bmi),

rk=list(cubic(dur), cubic(bmi), rk.prod(kron(dur), cubic(bmi)),

rk.prod(kron(bmi), cubic(dur)), rk.prod(cubic(dur), cubic(bmi))))

> summary(wesdr.fit2)

...

72



bmi

pr
g

20 30 40 50

0.
0

0.
4

0.
8

•• •

• •

•

•••• • ••

•• • ••

•

• ••• ••• •

• •

•••

•

•• ••

•

••

•

••

•

••• •• • •

•• •• •

• •••

•

•

•

•

• •• •

•

•• •

•• • •

• • •

•

•

• ••

•

•• •• ••

••

••

••

•••• •

• •

• •

•

• •

•

• •• • •• •

•••• •

•

• •

• ••• • •

• •

•

• ••

•• ••

•

•• •

•

•

•

••

•

••

•

•

••

•• •••

• •

••

•

•

•

••

• •

• •• •• •

• • •

•• • ••• ••• ••

•

••

• • •

•• •

••

• • ••

• •

•• •

• •

•

•

••• • •• ••

•

• ••

•

•

•

•

•

•• •

•

•

• •••

•

•

•

•••

•

•

• •

•

•

•• • •••

•

••

•• •

•

•

•

• •• ••

•

•• •• • • • ••• •• ••

•

• ••• •

••

•• • •

•

• •••

•••

•

••

•

•

•

•

•

•

•

•

•

••

•••

• ••

• •

•

••

•

•

•

• ••

•••••

••• •

•

•• ••

••

•

• •

• •• ••

•

•

•• •• •••

•

•

•

•

••

•

••• ••

• •• •

•• •

•• •••

•• •

•• •

•

• •• •

• •• •

•

•• •• •• •

•

•••

•

•••

• • •

•• •

•

• ••

••

• •• •

• ••

•• ••

• ••

•

•

• ••

•••

•

••

•• •• •

••

•

•

•

•

•

•

• ••

• •

•

•

• ••

•

•

•• •••

•

• •

••

•

•• •

•

•

•

•

•

• •••• •

•

•

•• • •

•

•

•

• •

• ••

•

•

•

• • • •

•

•••

• •• •

•

•

• ••• •

• ••

••• ••

• ••

•

•

•

•• • •

••

•• ••

•

••

•

•

•

•• •

•• •

• •

• •

•

••• ••

••

• •

•

•

•

• •

•

• • • •• •• •

•

•

•

•

•

•

•••

•• ••

• •

• ••

• ••

• ••

•• • •

•

••

•

•

•

•

• ••• • •

•

•

• •

•

••

•

Figure 35: Points are observations. Solid line is fitted probability function. Dotted lines are 95%
Bayesian confidence intervals.

Coefficients (d):

(Intercept) dur gly bmi I(dur * bmi)

-6.1810142 -2.5728071 0.3864040 0.1401764 11.2939414

UBR estimate(s) of smoothing parameter(s) : 2.653578e+00 3.982479e+00 2.941409e+05 3.086313e+05 8.194281e-02

Equivalent Degrees of Freedom (DF): 11.19937

Estimate of sigma: 1

> grid <- expand.grid(dur=seq(min(wesdr$dur),max(wesdr$dur),len=40),

bmi=seq(min(wesdr$bmi),max(wesdr$bmi),len=40),

gly=median(wesdr$gly))

> p.wesdr.fit2 <- predict(wesdr.fit2, grid)

Figure 36 reproduce Figure 6.1 in Wahba et al (1994).

8.7 Potassium Measurements on Dogs

36 dogs were assigned to four groups: control, extrinsic cardiac denervation three weeks prior to
coronary occlusion, extrinsic cardiac denervation immediately prior to coronary occlusion, and bilateral
thoratic sympathectomy and stellectomy three weeks prior to coronary occlusion. Coronary sinus
potassium concentrations were measured on each dog every two minutes from 1 to 13 minutes after
occlusion (Grizzle and Allen 1969). Observations are shown in Figure 37.

We are interested in (i) estimating the group (treatment) effects; (ii) estimating the population
mean concentration as functions of time; and (iii) predicting response over time for each dog. There
are two categorical covariates group and dog and a continuous covariate time. We code the group

factor as 1 to 4, and the observed dog factor as 1 to 36. We transform the time variable into [0,1]. We
treat group and time are fixed factors. From the design, the dog factor is nested within the group

73



duration (yr)

bo
dy

 m
as

s 
in

de
x

0 10 20 30 40 50

20
30

40
50

0.3

0.5 0.5 1

1

2

2

3

4

0.50.5

•

• •

•

•

• •
•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•
•

•
••

•

•

•

•

•

•
•

•

•

•
••

• •
•

• ••
••

•
••

•

••

•

•
••

•

•

•

•

•

•

•

•

•

•
•

••

•

••

•
•
•

• •
•

•

•

• •

•

•

•

•

•

•

• •
•

•

•

•

• •
••

•

•

•

•

••

• •
••

•

•

•

•

•
•

•

•

•

••
•••

•
•

•

•

•

•

•

•

•

• •

•

•

••

•
•

•

•

• •

•

•
• •

•

•

• •

•

•

•

•

•

•

•

•

•

•

• ••

•
•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•• •

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•
• •

•
•

• •

•
•

•

•
•

•

•

•
•

•
•

•

•

•
•

•

•

•
•

•

•

•

•

••

•
••

•

•

•

•

•

•
•

•

•

•

•
• •

•
•

•

•

oo

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

oo
o

o

o

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o
o

o

o
o

o

o

o
o

oo o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o
o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o
o

o

o

o

o

o

o

oo

o

o

o

o

o o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o
o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o
o

o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o

o

o

o

o

o
o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

oo
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
oo

oo
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

10
20

30
40

50

duration (yr)20

30

40

50

body mass index

 0
0.

10
.2

0.
30

.4
0.

50
.6

pr
ob

ab
ili

ty

Figure 36: Left: data and contours of constant posterior standard deviation. Right: estimated prob-
ability of progression as a function of durand bmi for gly fixed at its median.

factor. Therefore we treat dog as a random factor. For group k, denote Bk as the population from
which the dogs in group k were drawn and Pk as the sampling distribution. Assume the following
model

ykwj = f(k, w, tj) + εkwj ; k = 1, · · · , 4; w ∈ Bk; tj ∈ [0, 1],

where ykwj is the observed potassium concentration at time tj of dog w in the population Bk, f(k, w, tj)
is the “true” concentration at time tj of dog w in the population Bk, and εkwj ’s are random errors.
f(k, w, tj) is a function defined on {{1}⊗B1, {2}⊗B2, {3}⊗B3, {4}⊗B4}⊗ [0, 1]. Note that f(k, w, j)
is a random variable since w is a random sample from Bk. What we observe are realizations of this
“true” mean function plus random errors. We use label i to denote dogs we actually observe.

Suppose that we want to model the time factor using a cubic spline, and shrink both the group

and dog factors toward constants. We define the following four projection operators:

P2f =

∫

Bk

f(k, w, t)dPk(w),

P1f =
4∑

k=1

P2f(k, t)/4,

P3f =

∫ 1

0
f(k, w, t)dt,

P4f = [

∫ 1

0
(∂f(k, w, t)/∂t)dt](t − 0.5).

Then we have the following SS ANOVA decomposition

f

= [P1 + (P2 − P1) + (I − P2)][P3 + P4 + (I − P3 − P4)]f

74



time (min)

po
ta

ss
iu

m
3.

0
3.

5
4.

0
4.

5
5.

0
5.

5
6.

0

1 3 5 7 9 11 13

0 0
0

0 0

0

0

1
1

1 1

1

1

1

2
2

2 2

2

2

2

3

3

3

3

3

3

3

4

4

4

4

4 4

4

5

5

5

5
5

5
5

6

6 6

6

6

6

6
7

7

7

7

7

7

7
8 8

8

8

8

8

8

Group  1

time (min)

po
ta

ss
iu

m
3.

0
3.

5
4.

0
4.

5
5.

0

1 3 5 7 9 11 13

0 0
0

0 0

0

0

1

1

1 1
1

1
1

2
2

2

2

2

2 2
3

3 3 3
3

3 3

4
4

4

4

4 4
4

5

5

5
5

5 5 5

6 6 6
6

6

6 6

7

7

7
7

7

7 7
8

8
8 8

8

8

8

9
9

9

9

9

9 9

Group  2

time (min)

po
ta

ss
iu

m
3.

0
3.

5
4.

0
4.

5
5.

0
5.

5

1 3 5 7 9 11 13

0
0

0 0

0

0

0

1
1 1

1 1
1

1

2

2
2

2
2

2 2

3

3
3

3

3

3

3
4 4

4

4

4

4 4

5

5

5

5

5

5

5

6

6

6

6

6

6

6

7
7

7

7

7

7

7

Group  3

time (min)

po
ta

ss
iu

m
3.

0
3.

5
4.

0
4.

5
5.

0
5.

5

1 3 5 7 9 11 13

0

0 0

0

0 0

0
1

1

1
1 1

1

1

2

2

2

2

2

2
2

3 3
3

3
3

3

3

4
4

4
4

4

4
4

5

5

5
5

5

5

5

6

6

6

6

6
6

6

7 7

7

7
7

7
7

8
8 8

8

8
8

8

Group  4

Figure 37: Plots of responses of each dog over time. Solid lines link within group average responses
at each time point.

75



= P1P3f + P1P4f + P1(I − P3 − P4)f

+(P2 − P1)P3f + (P2 − P1)P4f + (P2 − P1)(I − P3 − P4)f

+(I − P2)P3f + (I − P2)P4f + (I − P2)(I − P3 − P4)f

= µ + β(t − 0.5) + s1(t)

+ξk + δk(t − 0.5) + s2(k, t)

+αw(k) + γw(k)(t − 0.5) + s3(k, w, t), (78)

where µ is a constant, β(t−0.5) is the linear main effect of time, s1(t) is the smooth main effect of time,
ξk is the main effect of group, δk(t− 0.5) is the linear interaction between time and group, s2(k, t) is
the smooth interaction between time and group, αw(k) is the main effect of dog, γw(k)(t − 0.5) is the
linear interaction between time and dog, and s3(k, w, t) is the smooth interaction between time and
dog. We can calculate the main effect of time as β(t− 0.5) + s1(t), the interaction between time and
group as δk(t−0.5)+ s2(k, t), and the interaction between time and dog as γw(k)(t−0.5)+ s3(k, w, t).
The first six terms are fixed effects. The last three terms are random effects since they depend on
the random variable w. Depending on time only, the first three terms represent the mean curve for
all dogs. The middle three terms measure the departure of a particular group from the population
mean curve. The last three terms measure the departure of a particular dog from the mean curve of
a population from which the dog was chosen.

Based on the SS ANOVA decomposition (78), we will fit the following three models.

Model 1 includes the first seven terms in (78). It has a different population mean curve for each

group plus a random intercept for each dog. We assume that αi
iid
∼ N(0, σ2

a), εkij
iid
∼ N(0, σ2), and they

are mutually independent.

Model 2 includes the first eight terms in (78). It has a different population mean curve for

each group plus a random intercept and a random slope for each dog. We assume that (αi, γi)
iid
∼

N((0, 0), diag(σ2
1, σ

2
2)), εkij

iid
∼ N(0, σ2), and they are mutually independent.

Model 3 includes all nine terms in (78). It has a different population mean curve for each group
plus a random intercept, a random slope and a smooth random effect for each dog. We assume that

(αi, γi)
iid
∼ N((0, 0), diag(σ2

1, σ
2
2)), s3(k, i, t)’s are stochastic processes which are independent between

dogs with mean zero and covariance function σ2
3[k2(s)k2(t) − k4(s − t)], εkij

iid
∼ N(0, σ2), and they are

mutually independent.

Now we show how to fit these three models using slm. Notice that the fixed effects, s1(t), ξk,
δk(t − 0.5) and s2(k, t) are penalized. Model 1 and Model 2 can be fitted easily as follows.

> dog.fit1 <- slm(y~time, rk=list(cubic(time), shrink1(group),

rk.prod(kron(time-.5), shrink1(group)),

rk.prod(cubic(time), shrink1(group))),

random=list(dog=~1), data=dog.dat)

> dog.fit1

Semi-parametric linear mixed-effects model fit by REML

Model: y ~ time

Data: dog

Log-restricted-likelihood: -180.4784

Fixed: y ~ time

76



(Intercept) time

3.8716387 0.4339031

Random effects:

Formula: ~1 | dog

(Intercept) Residual

StdDev: 0.4980483 0.3924432

GML estimate(s) of smoothing parameter(s) : 0.0002334736 0.0034086209

0.0038452499 0.0002049233

Equivalent Degrees of Freedom (DF): 13.00377

Estimate of sigma: 0.3924432

> dog.fit2 <- update(dog.fit1, random=list(dog=~time))

> dog.fit2

Semi-parametric linear mixed-effects model fit by REML

Model: y ~ time

Data: dog.dat

Log-restricted-likelihood: -166.4478

Fixed: y ~ time

(Intercept) time

3.876712 0.4196789

Random effects:

Formula: ~ time | dog

Structure: General positive-definite

StdDev Corr

(Intercept) 0.4188372 (Inter

time 0.5593078 0.025

Residual 0.3403214

GML estimate(s) of smoothing parameter(s) :

1.674736e-04 3.286466e-03 5.778379e-03 8.944005e-05

Equivalent Degrees of Freedom (DF): 13.83273

Estimate of sigma: 0.3403214

To fit Model 3, we need to find a way to specify the smooth (non-parametric) random effect s3.

Let t = (t1, · · · , t7)
T , ui(t) = (s3(k, i, t1), · · · , s3(k, i, t7))

T and u = (uT
1 , · · · , uT

36)
T . Then ui(t)

iid
∼

N(0, σ2
3D), where D is the RK of a cubic spline evaluated at the design points t. Let D = HHT be the

Cholesky decomposition of D, D̃ = diag(D, · · · , D), and G = diag(H, · · · , H). Then GGT = D̃. We
can write u = Gb, where b ∼ N(0, σ2

3I). Then we can specify the random effects u using the matrix
G.

> D <- cubic(dog.dat$time[1:7])

77



> H <- chol.new(D)

> G <- kronecker(diag(36), H)

> dog.dat$all <- rep(1,36*7)

> dog.fit3 <- update(dog.fit2, random=list(all=pdIdent(~G-1), dog=~time))

> dog.fit3

Semi-parametric linear mixed-effects model fit by REML

Model: y ~ time

Data: dog.dat

Log-restricted-likelihood: -150.0885

Fixed: y ~ time

(Intercept) time

3.885269 0.4046573

Random effects:

Formula: ~ G - 1 | all

Structure: Multiple of an Identity

...

Formula: ~ time | dog %in% all

Structure: General positive-definite

StdDev Corr

(Intercept) 0.4671536 (Inter

time 0.5716811 -0.083

Residual 0.2383432

GML estimate(s) of smoothing parameter(s) :

8.775590e-05 1.560998e-03 3.346731e-03 2.870384e-05

Equivalent Degrees of Freedom (DF): 15.37699

Estimate of sigma: 0.2383432

We could use the anova function for linear mixed-effects models to compare these three fits.

> anova(dog.fit1$lme.obj, dog.fit2$lme.obj, dog.fit3$lme.obj)

Model df AIC BIC logLik Test L.Ratio p-value

dog.fit1$lme.obj 1 8 376.9590 405.1307 -180.4795

dog.fit2$lme.obj 2 10 352.8955 388.1101 -166.4478 1 vs 2 28.06346 <.0001

dog.fit3$lme.obj 3 11 322.1771 360.9131 -150.0885 2 vs 3 32.71845 <.0001

So Model 3 is more favorable. We can calculate estimates of the population mean curves for four
groups as follows.

> dog.grid <- data.frame(time=rep(seq(0,1,len=50),4),

group=as.factor(rep(1:4,rep(50,4))))

> e.dog.fit3 <- intervals(dog.fit3, newdata=dog.grid, terms=rep(1,6))

Figure 38 plots these mean curves and their 95% confidence intervals.

We have shrunk the effects of group factor toward constants. That is, we have penalized the group

78



time (min)

f

3.5

4

4.5

5

2 4 6 8 10 12

1 2

2 4 6 8 10 12

2 4 6 8 10 12

3 4

2 4 6 8 10 12

Figure 38: Estimates of the population mean response curve as a function of time with their 95%
confidence intervals. Circles are within group average responses. Solid lines are estimates. Dotted
lines are 95% confidence intervals.

main effect ξk and the linear time-group interaction δk(t−0.5) in the SS ANOVA decomposition (78).
From Figure 38 we can see that the estimated population mean curve for group 2 are biased upward,
while the estimated population mean curves for group 1 is biased downward. This is because responses
from group 2 are smaller while responses from group 1 are larger than those from groups 3 and 4.
Thus their estimates are pulled towards the overall mean. Shrinkage estimates in this case may not
be advantageous since group only has four levels. One may want to leave ξk and δk(t − 0.5) terms
unpenalized to reduce biases. We can re-write the fixed effects in (78) as

fk(t)
def
= µ + β(t − 0.5) + s1(t) + ξk + δk(t − 0.5) + s2(k, t)

= [µ + ξk] + [β(t − 0.5) + δk(t − 0.5)] + [s1(t) + s2(k, t)]

= ξ̃k + δ̃k(t − 0.5) + s̃2(k, t). (79)

fk(t) is the population mean curve for group k. Assume fk ∈ W2([0, 1]). Define penalty as
∫ 1
0 (f ′′

k (t))2dt =
||s̃2(k, t)||2. Then the constant term ξ̃k and the linear term δ̃k(t − 0.5) are not penalized. Note that
this form of penalty was used in Wang (1998b). We can refit Model 1, Model 2 and Model 3 under
this new form of penalty as follows.

> dog.fit4 <- slm(y~group*time, rk=list(rk.prod(cubic(time), kron(group==1)),

rk.prod(cubic(time), kron(group==2)),

rk.prod(cubic(time), kron(group==3)),

rk.prod(cubic(time), kron(group==4))),

random=list(dog=~1), data=dog.dat)

> dog.fit4

Semi-parametric linear mixed-effects model fit by REML

Model: y ~ group * time

Data: dog

Log-restricted-likelihood: -173.0538

Fixed: y ~ group * time

79



(Intercept) group2 group3 group4 time group2:time

4.30592658 -0.70377899 -0.45507981 -0.54411601 0.70494987 -0.80352151

group3:time group4:time

-0.02604081 -0.33005253

Random effects:

Formula: ~1 | dog

(Intercept) Residual

StdDev: 0.4986658 0.3880457

GML estimate(s) of smoothing parameter(s) : 2.470589e-05 1.290422e+00

7.737418e-05 8.136673e-04

Equivalent Degrees of Freedom (DF): 13.05131

Estimate of sigma: 0.3880457

> dog.fit5 <- update(dog.fit4, random=list(dog=~time))

> dog.fit5

Semi-parametric linear mixed-effects model fit by REML

Model: y ~ group * time

Data: dog

Log-restricted-likelihood: -158.7129

Fixed: y ~ group * time

(Intercept) group2 group3 group4 time group2:time

4.31780496 -0.71566053 -0.46280282 -0.55513686 0.68418592 -0.78275742

group3:time group4:time

-0.01217737 -0.30620677

Random effects:

Formula: ~time | dog

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 0.4225180 (Intr)

time 0.5536860 -0.005

Residual 0.3367037

GML estimate(s) of smoothing parameter(s) : 1.714698e-05 3.894053e+00

5.640272e-05 4.988060e-04

Equivalent Degrees of Freedom (DF): 13.74553

Estimate of sigma: 0.3367037

> dog.fit6 <- update(dog.fit5, random=list(all=pdIdent(~G-1), dog=~time))

> dog.fit6

80



Semi-parametric linear mixed-effects model fit by REML

Model: y ~ group * time

Data: dog

Log-restricted-likelihood: -142.3147

Fixed: y ~ group * time

(Intercept) group2 group3 group4 time group2:time

4.33679882 -0.72758015 -0.47372184 -0.57605073 0.65150749 -0.75063284

group3:time group4:time

0.00427347 -0.26053905

Random effects:

Formula: ~ G - 1 | all

...

Formula: ~time | dog %in% all

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 0.4688705 (Intr)

time 0.5665381 -0.104

Residual 0.2394261

GML estimate(s) of smoothing parameter(s) : 8.175602e-06 1.567092e+00

3.081125e-05 1.289556e-01

Equivalent Degrees of Freedom (DF): 13.43655

Estimate of sigma: 0.2394261

> anova(dog.fit4$lme.obj, dog.fit5$lme.obj, dog.fit6$lme.obj)

Model df AIC BIC logLik Test L.Ratio p-value

dog.fit4$lme.obj 1 14 374.1076 423.0680 -173.0538

dog.fit5$lme.obj 2 16 349.4257 405.3804 -158.7129 1 vs 2 28.68192 <.0001

dog.fit6$lme.obj 3 17 318.6295 378.0814 -142.3148 2 vs 3 32.79624 <.0001

We note that the estimates are similar to, but not exactly the same as, those calculated by SAS proc

mixed in Wang (1998b). The differences may be caused by different starting values and/or numerical
procedures. We calculate estimates of the population mean curves for four groups as before.

> e.dog.fit6 <- intervals(dog.fit6, newdata=dog.grid, terms=rep(1,12))

Figure 39 plots these mean curves and their 95% confidence intervals.

We now show how to calculate predictions for dogs. Prediction for dog i in group k on a point t
can be computed as ξ̂k + δ̂k(t−0.5)+ ŝ2(k, t)+ α̂i + γ̂i(t−0.5)+ ŝ3(k, i, t). Prediction of the fixed effects
can be computed using the prediction.slm function. α̂i and γ̂i are provided in the estimates of the
random effects. Thus we only need to compute ŝ3(k, i, t). Suppose that we want to predict s3 for dog
i in group k on a vector of points zi = (zi1, · · · , zigi

)T . Let ui(zi) = (s3(k, i, zi1), · · · , s3(k, i, zigi
))T ,

Ri = Cov(ui(zi), ui(t)) = {R1(zik, tj)}
gi

k=1
7
j=1,

81



time (min)

f

3

3.5

4

4.5

5

5.5

2 4 6 8 10 12

1 2

2 4 6 8 10 12

2 4 6 8 10 12

3 4

2 4 6 8 10 12

Figure 39: Estimates of the population mean response curve as a function of time with their 95%
confidence intervals. Circles are within group average responses. Solid lines are estimates. Dotted
lines are 95% confidence intervals.

where R1(z, t) = k2(z)k2(t) − k4(z − t). Let z = (zT
1 , · · · , zT

36)
T , R = diag(R1, · · · , R36) and û be the

prediction of u. We then can compute the prediction for all dogs as

û(z) = RD̃−1û.

However the smallest eigen-value of D is close to zero, thus D̃−1 cannot be calculated precisely. We
will use an alternative approach which does not require inverting D. Denote the estimate of b as b̂.
If we can find a vector c (need not to be unique) such that

GT c = b̂. (80)

Then
û(z) = RD̃−1û = RD̃−1(Gb̂) = RD̃−1(GGT c) = RD̃−1(GGT )c = Rc.

So the task now is to solve (80). Let

G = (Q1, Q2)

(

V
0

)

be the QR decomposition of G. We consider c in the space spanned by Q1: c = Q1α. Then from
(80), α = V −T b̂. Thus c = Q1V

−T b̂ is a solution to (80). This approach also applies to the situation
when D is singular. In the following we calculate predictions for all 36 dogs on a set of grid points.

> dog.grid2 <- data.frame(time=rep(seq(0,1,len=50),36),

dog=rep(1:36,rep(50,36)))

> R <- kronecker(diag(36),cubic(dog.grid2$time[1:50],dog.dat$time[1:7]))

> b <- as.vector(dog.fit6$lme.obj$coef$random$all)

> G.qr <- qr(G)

> c.coef <- qr.Q(G.qr)%*%solve(t(qr.R(G.qr)))%*%b

> tmp1 <- c(rep(e.dog.fit6$fit[dog.grid$group==1],9),

82



rep(e.dog.fit6$fit[dog.grid$group==2],10),

rep(e.dog.fit6$fit[dog.grid$group==3],8),

rep(e.dog.fit6$fit[dog.grid$group==4],9))

> tmp2 <- as.vector(rep(dog.fit6$lme.obj$coef$random$dog[,1],rep(50,36)))

> tmp3 <- as.vector(kronecker(dog.fit6$lme.obj$coef$random$dog[,2],

dog.grid2$time[1:50]))

> u.new <- as.vector(R%*%c.coef)

> p.dog.fit6 <- tmp1+tmp2+tmp3+u.new

Predictions for dogs 1, 2, 26 and 27 are shown in Figure 40.

time (min)

f

3

3.5

4

4.5

5

5.5

2 4 6 8 10 12

1 2

2 4 6 8 10 12

2 4 6 8 10 12

26 27

2 4 6 8 10 12

Figure 40: Plots of predictions for dogs 1, 2, 26 and 27. Circles are observations. Solid lines are
predictions.

Observations close in time from the same dog may be correlated. In the following we fit a first-order
autoregressive structure for random errors within each dog.

> dog.fit7 <- update(dog.fit6, cor=corAR1(form=~1|all/dog))

> dog.fit7

Model: y ~ group * time

Data: dog

Log-restricted-likelihood: -132.6711

Fixed: y ~ group * time

(Intercept) group2 group3 group4 time group2:time

4.343695660 -0.760617887 -0.483550117 -0.620851406 0.629970047 -0.715780104

group3:time group4:time

0.008927178 -0.239117441

Random effects:

Formula: ~ G - 1 | all

Structure: Multiple of an Identity

...

83



Formula: ~time | dog %in% all

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 0.2779298 (Intr)

time 0.2909205 0.991

Residual 0.4456182

Correlation structure of class corAR1 representing

Phi

0.6359198

GML estimate(s) of smoothing parameter(s) : 2.921150e-05 1.954848e+06

1.098781e-04 1.893688e+01

Equivalent Degrees of Freedom (DF): 11.63503

Estimate of sigma: 0.4030084

By convention in nlme, model dog.fit7 may also be fitted as

dog.fit8 <- update(dog.fit6, cor=corAR1(form=~1))

8.8 Rock Data

The rock data in Venables and Ripley (1998) contains measurements on four cross-sections of each
of 12 oil-bearing rocks. The aim is to predict permeability (perm) from three other measurements:
the total area (area), total perimeter (peri) and a measure of “roundness” of the pores in the rock
cross-section (shape). Venables and Ripley (1998) fitted this data set with a projection pursuit (PP)
regression model. Here we show how to use the snr function to fit the following PP regression model

log(perm) = f(α1 × area + α2 × peri + ×α3shape) + ε, (81)

where α2
1 + α2

2 + α2
3 = 1 and α3 > 0 for identifiability.

We first fit model (81) using the R function ppr as in Venables and Ripley (1998). Then we fit
the same model using snr with initial values from the ppr fit. We use a TPS with d = 1 and m = 2
to model f . We made the following transformations: dividing area and peri by 10000, and taking
the natural logarithm of perm.

> data(rock)

> attach(rock)

> area1 <- area/10000; peri1 <- peri/10000

> rock.ppr <- ppr(log(perm) ~ area1 + peri1 + shape,

data=rock, nterms=1, max.terms=5)

> summary(rock.ppr)

Call:

ppr(formula = log(perm) ~ area1 + peri1 + shape, rock.Rdata = rock,

nterms = 1, max.terms = 5)

Goodness of fit:

1 terms 2 terms 3 terms 4 terms 5 terms

19.590843 8.737806 5.289517 4.745799 4.490378

84



Projection direction vectors:

area1 peri1 shape

0.347565455 -0.937641311 0.005198698

Coefficients of ridge terms:

[1] 1.495419

> rock.snr <- snr(log(perm) ~ f(a1*area1+a2*peri1+sqrt(1-a1^2-a2^2)*shape),

func=f(u)~list(~u,tp(u)),

params=list(a1+a2~1),

start=list(params=c(.34,-.94)))

> rock.snr

Semi-parametric Nonlinear Regression Model Fit

Model: log(perm) ~ f(a1 * area1 + a2 * peri1 + sqrt(1 - a1^2 - a2^2) * shape)

Log-likelihood: -50.04593

Coefficients:

a1 a2

0.3449282 -0.9386264

Smoothing spline:

GCV estimate(s) of smoothing parameter(s): 1.249731e-06

Equivalent Degrees of Freedom (DF): 4.144281

Residual standard error: 0.770572

Number of Observations: 48

Converged after 5 iterations

> a <- seq(min(z),max(z),len=50)

> rock.snr.ci <- intervals(rock.snr,newdata=data.frame(u=a))

> rock.ppr.p <- predict(rock.ppr)

snr converged after 5 iterations. Let z = α̂1 × area1 + α̂2 × peri1 +
√

1 − α̂1
2 − α̂2

2 × shape. In
Figure 41, against the z values, we plot the observations as circles, the fitted curve f from rock.snr

as the solid line with 95% Bayesian confidence intervals as the dotted lines, and the shape of the fitted
curve f from rock.ppr as the dashed line. The fitted curves from snr and ppr have different shapes.

8.9 CO2 Uptake Data

This dataset comes from a study of cold tolerance of a C4 grass species, Echinochloa crus-galli, de-
scribed in Potvin, Lechowicz and Tardif (1990) and Pinheiro and Bates (2000). A total of twelve
four-week-old plants were used in the study. There were two types of plants: six from Quebec and
six from Mississippi. Two treatments, nonchilling and chilling, were assigned to three plants of each

85



−0.10 −0.05 0.00 0.05 0.10 0.15 0.20

2
4

6
8

z

lo
g(

pe
rm

)

oo oo

oo oo

ooo o
ooo o

oo oo

o ooo

oo oo oo o oo o o o

o oo o

oo oo

oo o o

Figure 41: Plot of perm on logarithm scale vs z values as circles. The solid line is the fitted curve from
rock.snr. Two dotted lines are its 95% Bayesian confidence intervals. The dashed line represents the
shape of the fitted curve from rock.ppr.

type. Nonchilled plants were kept at 26oC and chilled plants were subject to 14 hours of chilling at
7oC. After 10 hours of recovery at 20oC, CO2 uptake rates (in µmol/m2s) were measured for each
plant at seven concentrations of ambient CO2 in increasing, consecutive order. Plots of observations
are shown in Figure 42 as circles. The objective of the experiment was to evaluate the effect of plant
type and chilling treatment on the CO2 uptake.

Pinheiro and Bates (2000) gave detailed analyses of this dataset based on NLMMs using their
software nlme. They reached the following model:

uptakeij = eφ1i{1 − e−eφ2i (concj−φ3i)} + εij , i = 1, · · · , 12, j = 1, · · · , 7,

φ1i = β11 + β12Type + β13Treatment + β14Treatment:Type + bi,

φ2i = β21,

φ3i = β31 + β32Type + β33Treatment + β34Treatment:Type, (82)

where uptakeij denotes the CO2 uptake rate of plant i at CO2 ambient concentration concj ; Type
equals 0 for plants from Quebec and 1 for plants from Mississippi, Treatment equals 0 for chilled plants
and 1 for control plants; eφ1i , eφ2i and φ3i denote respectively the asymptotic uptake rate, the uptake
growth rate, and the maximum ambient CO2 concentration at which no uptake is verified for plant

i; random effects bi
iid
∼ N(0, σ2

b ); and random errors εij
iid
∼ N(0, σ2). Note that we used exponential

transformations to enforce the positivity constraints.

> options(contrasts=rep("contr.treatment", 2))

> co2.fit1 <- nlme(uptake~exp(a1)*(1-exp(-exp(a2)*(conc-a3))),

86



Ambient carbon dioxide concentration(uL/L)

C
O

2
 u

p
ta

ke
 r

a
te

 (
u
m

o
l/m

^2
 s

)

10

20

30

40

200 400 600 800 1000

Mc1 Mc2

200 400 600 800 1000

Mc3

Mn1 Mn2

10

20

30

40

Mn3

10

20

30

40

Qc1 Qc2 Qc3

Qn1 Qn2

200 400 600 800 1000

10

20

30

40

Qn3

Figure 42: Plots of the data and fitted curves. Circles are observations. Solid lines represent SNM
model fits from co2.fit2. Dotted lines represent NLMM fits from co2.fit1. In the strip name for
each plot, “Q” indicates Quebec, “M” Mississippi, “c” chilled, “n” nonchilled, and “1”, “2”, “3” the
replicate numbers.

87



fixed=list(a1+a2~Type*Treatment,a3~1),

random=a1~1, groups=~Plant, data=CO2,

start=c(log(30),0,0,0,log(0.01),0,0,0,50))

> co2.fit1

Nonlinear mixed-effects model fit by maximum likelihood

Model: uptake ~ exp(a1) * (1 - exp(-exp(a2) * (conc - a3)))

Data: CO2

AIC BIC logLik

393.2869 420.0259 -185.6434

Random effects:

Formula: a1 ~ 1 | Plant

a1.(Intercept) Residual

StdDev: 0.08221494 1.857658

Fixed effects: list(a1 + a2 ~ Type * Treatment, a3 ~ 1)

Value Std.Error DF t-value p-value

a1.(Intercept) 3.73338 0.052536 64 71.06301 <.0001

a1.TypeMississippi -0.29080 0.075535 64 -3.84990 0.0003

a1.Treatmentchilled -0.07274 0.074633 64 -0.97459 0.3334

a1.TypeMississippi:Treatmentchilled -0.51321 0.109733 64 -4.67688 <.0001

a2.(Intercept) -4.57570 0.086116 64 -53.13387 <.0001

a2.TypeMississippi -0.09635 0.103950 64 -0.92687 0.3575

a2.Treatmentchilled -0.17048 0.091377 64 -1.86565 0.0667

a2.TypeMississippi:Treatmentchilled 0.70555 0.205851 64 3.42748 0.0011

a3 49.98833 4.576255 64 10.92341 <.0001

...

Fits of model (82) are plotted in Figure 42 as dotted lines. Based on model (82), one may conclude
that the CO2 uptake is higher for plants from Quebec and that chilling, in general, results in lower
uptake, and its effect on Mississippi plants is much larger than on Quebec plants. These conclusions
are comparable to the results in Potvin et al. (1990).

We aim to use this dataset to demonstrate how to fit SNM models with covariates, and how to
check if an NLMM is appropriate. As an extension of (82), we fit the following SNM model

uptakeij = eφ1if(eφ2i(concj − φ3i)) + εij , i = 1, · · · , 12, j = 1, · · · , 7,

φ1i = β12Type + β13Treatment + β14Treatment:Type + bi,

φ2i = β21,

φ3i = β31 + β32Type + β33Treatment + β34Treatment:Type, (83)

where f ∈ W2([0, T ]) for some fixed T > 0 and the second stage model is paralleled to (82). In order
to test if the parametric model (82) is appropriate, we construct the following L-spline to model f .
The hypothesis is H0: f ∈ span{1 − e−t}. Let L = D + D2, where Dj denotes the jth derivative
operator. The kernel space of L is H1 = span{1, e−t}. Define a linear operator B : W2[0, T ] → R2

such that Bf = (f(0), f ′(0)). Let H2 = kerB. Define inner products on H1,H2, and W2[0, T ] as
< f, g >1= (Bf)T (Bg), < f, g >2=

∫ T
0 (Lf)(Lg)dt and < f, g >=< f, g >1 + < f, g >2. Then it is

88



easy to check that W2[0, T ] = H1 ⊕H2. The reproducing kernel of H2 is given in (12).

Note that β11 in (82) is excluded from (83) to make f free of constraint on the vertical scale. We
need the side conditions that f(0) = 0 and f(t) 6= 0 for t 6= 0 to separate β31 from f . The first
condition reduces H1 to H1 = span{1− e−t} and is satisfied by all functions in H2. We do not enforce
the second condition because it is satisfied by all reasonable estimates. Thus the null space for f
becomes H0

1 = span{1 − e−t} and the model space is H0
1 ⊕H2. The penalty is still J(f) =

∫
(Lf)2.

With the initial values chosen from the NLMM fit, our program converged after 5 iterations.

> M <- model.matrix(~Type*Treatment, data=CO2)[,-1]

> co2.fit2 <- snm(uptake~exp(a1)*f(exp(a2)*(conc-a3)),

func=f(u)~list(~I(1-exp(-u))-1,lspline(u, type="exp")),

fixed=list(a1~M-1,a3~1,a2~Type*Treatment),

random=list(a1~1), group=~Plant, verbose=T,

start=co2.fit1$coe$fixed[c(2:4,9,5:8)], data=CO2)

> summary(co2.fit2)

Semi-parametric Nonlinear Mixed Effects Model fit

Model: uptake ~ exp(a1) * f(exp(a2) * (conc - a3))

Data: CO2

AIC BIC logLik

406.4864 441.625 -188.3760

Random effects:

Formula: a1 ~ 1 | Plant

a1.(Intercept) Residual

StdDev: 0.09304172 1.816200

Fixed effects: list(a1 ~ M - 1, a3 ~ 1, a2 ~ Type * Treatment)

Value Std.Error DF t-value p-value

a1.MTypeMississippi -0.28569 0.055952 65 -5.10591 <.0001

a1.MTreatmentchilled -0.07212 0.054741 65 -1.31739 0.1923

a1.MTypeMississippi:Treatmentchilled -0.54879 0.099184 65 -5.53309 <.0001

a3 50.67565 4.226094 65 11.99113 <.0001

a2.(Intercept) -4.56698 0.085130 65 -53.64708 <.0001

a2.TypeMississippi -0.12162 0.098575 65 -1.23377 0.2217

a2.Treatmentchilled -0.16161 0.087009 65 -1.85740 0.0678

a2.TypeMississippi:Treatmentchilled 0.81924 0.211587 65 3.87187 0.0003

...

GCV estimate(s) of smoothing parameter(s): 1.864811

Equivalent Degrees of Freedom (DF): 4.867178

Converged after 5 iterations

Fits of model (83) are plotted in Figure 42 as solid lines. Since the data set is small, different initial
values may lead to different estimates. However, the overall fits are similar. We also fitted models
with AR(1) within-subject correlations and covariate effects on φ3. None of these models improve fits
significantly. The estimates are comparable to the nonlinear fits and the conclusion is similar to that

89



based on (82).

To check if the parametric NLMM (82) is appropriate, we calculated approximate posterior means
and variances using the function intervals. Then we plotted the estimated f (overall), its projection
onto H0

1 (the parametric part) and H2 (the smooth part) in Figure 43.

> co2.grid2 <- data.frame(u=seq(0.3, 11, len=50))

> co2.ci <- intervals(co2.fit2, newdata=co2.grid2,

terms=matrix(c(1,1,1,0,0,1), ncol=2,byrow=T))

> plot.bCI(co2.ci,x=co2.grid2$u,layout=c(3,1),

type.name=c("overall","parametric","smooth"))

x

es
tim

ate

0

10

20

30

40

0 2 4 6 8 10

overall parametric

0 2 4 6 8 10

0 2 4 6 8 10

smooth

Figure 43: The overall fit of the common curve (left), its projection onto H0
1 (center) and H2 (right).

Solid lines are fitted values. Dash lines are approximate 95% Bayesian confidence limits.

The zero line is inside the Bayesian confidence intervals for the projection onto H2 (smooth com-
ponent) which suggests that the parametric NLME model (82 is adequate.

For L-splines, Heckman and Ramsay (2000) showed that selecting the right form of penalty function
via a differential operator L can reduce the bias. An L-spline allows us to incorporate prior knowledge
on the main features of f into the penalty. Usually the form of L is known with coefficients depending
on some unknown parameters. Heckman and Ramsay (2000) proposed several methods to estimate
these parameters. When the whole model can be written in the form of an SNM model as in this
example, our methods can also be used to estimate the penalty. Our approach is the same as the
PL (penalized likelihood) approach in Heckman and Ramsay (2000). They commented that the PL
method is “philosophically appealing”. However it is also “time-consuming” because a grid search was
used. Our method estimates the coefficients in L and the functions f iteratively, thus making it less
computationally intensive. In addition, we allow these coefficients to depend on covariates.

8.10 Core Body Temperature Data

Circadian rhythms have become a topic of intensive research during the last 40 years. Often the
period is fixed as 24 hours due to the entrainment. However, for situations such as when individuals
are denied exposure to zeitgebers or are living on irregular sleep/wake schedule, the period of the
rhythm must be estimated from data. Several methods such as spectral analysis, autocorrelation,
Enright’s periodgram and linear regression of onset have been proposed in literature (Arendt, Mirors
and Waterhouse 1989, Refinetti 1993). The first three methods require equidistant samples and the

90



last method requires a marker for the onset of activity. All four methods requres several cycles of
observations. Our method illustrated below, under the assumption that the shape of circadian rhythm
remains unchanged, can be used for iregular design with few cycles.

This dataset is taken from a study on mood disorders. We thank Daniel Buysse, MD, and Hernando
Ombao, PhD, from the University of Pittsburgh for permission to use part of the data. For several
healthy and depressed subjects, core body temperature (bt) is measured over time every 5 minutes
for 48 hours. Each subject is put into an isolated room free of time cues. We only use data from
one subject and scale time variable into [0, 1]. Measurements of this subject are shown in Figure 44.
The goal was to investigate possible effects of mode disorder on the biological rhythms. For other
physiological measurements, it is known that biological rhythms exist. They are controlled by the
internal clock with a period close to 25 hours. We will assume that biological rhythms exist for core
body temperature with a similar period. Then the 48 hour observations contain at least one period.
We need to estimate the period and the shape function for each subject. The common practice of
fitting a sinusoidal function to each subject may not be appropriate (Wang and Brown 1996). We
demonstrate how to use SNR models to fit such data for further analyses. See Hall, Reimann and
Rice (2001) for another interesting example and discussions on identifiability.

0.0 0.2 0.4 0.6 0.8 1.0

36
.6

37
.0

37
.4

time

bt

Figure 44: Points are observations. Solid red line is the fit from model (84). Dotted green line is the
fit from model (85).

We consider the following model

bti = f(timei − α × int(
timei

α
)) + εi, (84)

where f is a periodic function on [0, α], α > 0 is the unknown period, and the int(x) returns the integer
part of x. We assume an AR(1) correlation structure for random errors εi’s. Because the period is

91



not unique, we define α as the smallest period to make f identifiable. It is evident that the period
is close to 24 hours. Thus we use α = 0.5 as the initial value. To relax the positive constraint, we
reparametrize α as a2 in the following program. We used the GML method to select the smoothing
parameter since the GCV under-smoothes in this case.

> cbt.fit1 <- snr(bt~f(time-a**2*floor(time/a**2)),

func=f(u)~list(~1, periodic(u)),

params=list(a~1), data=cbt, spar="m",

start=list(params=c(sqrt(.5))), cor=corAR1())

> cbt.fit1

Semi-parametric Nonlinear Regression Model Fit

Model: bt ~ f(time - a^2 * floor(time/a^2))

Data: cbt

Log-likelihood: 1141.090

Coefficients:

a

0.7094294

Correlation Structure: AR(1)

Formula: ~1

Parameter estimate(s):

Phi

0.8456162

Smoothing spline:

GML estimate(s) of smoothing parameter(s): 6.161782e-08

Equivalent Degrees of Freedom (DF): 21.72078

Residual standard error: 0.06496144

Number of Observations: 576

Converged after 4 iterations

> p.cbt.fit1 <- predict(cbt.fit1)

We can also fit an equivalent model

bti = g(β × timei) + εi, (85)

where g is an unknown periodic function with period 1, and β > 0 is unknown scale parameter. Letting
f(t) = g(βt), it is easy to check that models (84) and (85) are equivalent with α = 1/β. We can fit
model (85) with initial value β = 2 by

> cbt.fit2 <- snr(bt~f(a**2*time), func=f(u)~list(~1, periodic(u)),

params=list(a~1), data=cbt, spar="m",

start=list(params=c(sqrt(2))), cor=corAR1())

> cbt.fit2

Semi-parametric Nonlinear Regression Model Fit

Model: bt ~ f(a^2 * time)

92



Data: cbt

Log-likelihood: 1143.045

Coefficients:

a

1.412535

Correlation Structure: AR(1)

Formula: ~1

Parameter estimate(s):

Phi

0.8471175

Smoothing spline:

GML estimate(s) of smoothing parameter(s): 4.377812e-07

Equivalent Degrees of Freedom (DF): 21.38732

Residual standard error: 0.0649923

Number of Observations: 576

Converged after 4 iterations

> p.cbt.fit2 <- predict(cbt.fit2)

Fits from these two models are shown in Figure 44. They are very close. Both models suggest high
auto-correlation. The estimate of β is β̂ = 1.4125352 = 1.995255. 1/1.995255 = 0.501189, close
to α̂ = .7092 = 0.5032901. The estimated period based on models (84) and (85) are 24.15792 and
24.05707 hours respectively.

8.11 Canadian Temperature Data

The dataset, downloaded from the website http://www.psych.mcgill.ca/faculty/ramsay/

fda.html, includes mean monthly temperatures at 35 Canadian weather stations. The left panel
in Figure 45 shows the plots of mean temperature from 4 selected weather stations.

Ramsay and Silverman (1997) and Ramsay and Li (1998) used this dataset to illustrate the useful-
ness of Functional Data Analysis (FDA). Among others, they addressed the following two questions:
how to measure the departure from a sinusoidal model and how to register the curves for further
analyses. In the following, we approach these questions with SNM models.

We assume that mean temperatures over month at all weather stations share a common shape
function. Variation between stations are modeled by vertical shift, vertical scale and horizontal shift
parameters. That is, we assume that

tempij = µ + b1i + eb2if(monthij −
eb3i

1 + eb3i
) + εij , i = 1, · · · , 35, j = 1, · · · , 12, (86)

where tempij is the temperature of the jth month at station i; monthij is the time point scaled to

[0, 1]; bi = (b1i, b2i, b3i)
T ∼ N(0, σ2D), where D is an unstructured covariance matrix; εij ’s are errors

modeled by an AR(1) within-subject correlation structure with lag 1 autocorrelation coefficient ρ and

93



month

Te
m

pe
ra

tu
re

(a)

o
o

o

o

o

o

o
o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

−3
0

−2
0

−1
0

0
10

20

2 4 6 8 10 12
month

Te
m

pe
ra

tu
re

(b)

−4
0

−3
0

−2
0

−1
0

0
10

20

2 4 6 8 10 12

Figure 45: (a) Plot of temperature for four selected stations. With dots representing observations
and lines representing SNMM fits. (b) Fitted curves after alignment for all 35 stations. Left: plot of
temperatures for 4 selected stations.

variance σ2; µ, fixed, is the annual mean temperature for all stations; b1i is the vertical shift; eb2i is
the amplitude; and eb3i/(1 + eb3i) is the horizontal shift of station i. Since the mean temperature is
a periodic function with a period equal to one year, f is periodic with a period equal to 1. Thus we
assume f ∈ W2(per). To make the constant µ and f identifiable, we need the side condition

∫ 1
0 f = 0.

This is equivalent to assuming that f ∈ W 0
2 (per) = W2(per) ª span{1}, where span{1} represents

all constant functions. Since the sinusoidal form provides rough approximation to the temperature
profile, we use the L-spline with L = D2 + (2π)2. The GML estimate of the smoothing parameter
approaches to zero slowly as iteration increases, which leads to wiggly estimates. To get smoother
estimates, we set a lower bound for the smoothing parameter. Specifically, log10(nλ) ≥ −4. To save
time, we also change the convergence criterion from the default .0005 to .005.

> canada.fit <- snm(temp~b1+exp(b2)*f(month-alogit(b3)),

func=f(u)~list(~sin(2*pi*u)+cos(2*pi*u)-1,lspline(u,type=’’sine0’’)),

fixed=list(b1~1), random=list(b1+b2+b3~1), cor=corAR1(),

groups=~station, data=canadaTemp.dat,

control=list(rkpk.control=list(limnla=c(-4,0)),prec.out=0.005))

> summary(canada.fit)

...

AIC BIC logLik

1529.772 1607.5 -745.6426

Random effects:

Formula: list(b1 ~ 1, b2 ~ 1, b3 ~ 1)

Level: station

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

94



b1 5.94427125 b1 b2

b2 0.30031948 -0.745

b3 0.06308751 -0.013 -0.462

Residual 1.48044625

Correlation Structure: AR(1)

Formula: ~1 | station

Parameter estimate(s):

Phi

0.7258356

Fixed effects: list(b1 ~ 1)

Value Std.Error DF t-value p-value

b1 1.690498 0.6188728 385 2.731576 0.0066

GCV estimate(s) of smoothing parameter(s): 0.0001000000

Equivalent Degrees of Freedom (DF): 10.24364

Converged after 5 iterations

The resulting fits are plotted in the left panel of Figure 45 for the four selected stations. Fits for
other stations are similar. The estimated correlation coefficient is ρ̂ = 0.726 with an approximate 95%
confidence interval (0.03, 1). Thus there is evidence that serial correlation does exist in the data. Figure
46 shows the overall fit of the common curve and its projections on subspaces H1 (sinusoidal part)
and H2 (remaining part) together with their 95% Bayesian confidence intervals. The small departure
from sinusoidal form is statistically significant, especially in Spring and Fall. Our conclusion here is
comparable to that of Ramsay and Silverman (1997), but their approach is on individual stations and
does not provide a formal test.

Month

Te
m

pe
ra

tu
re

0 2 4 6 8 10 12−2
0

−1
0

0
10

overall

0 2 4 6 8 10 12

−1
0

0
10

parametric

0 2 4 6 8 10 12−1
.5

−1
−0

.5
0

0.
5

1
1.

5

smooth

Figure 46: The overall fit of the common shape function (a), and its projection onto H1 (b) and H2

(c). Solid lines are fitted values. Dotted lines are 95% Bayesian confidence intervals.

By removing the horizontal shift in each curve, we can easily align all curves. Therefore our method
can be used for curve registration.

grid <- NULL

for (i in 1:35) {

95



grid <- c(grid,seq(0,1,len=40)+

alogit(canada.fit$coef$random$station[70+i])+.5)

}

p.canada.2 <- predict(canada.fit, newdata=data.frame(month=grid,

station=rep(1:35,rep(40,35))))

The right panel in Figure 45 displays the fitted curves for all 35 stations after aligning them together
by removing shifts.

Below is new

Ramsay and Silverman (1997) also fitted various functional linear models (FLM) to this data
set. The functional data can appear in the FLM as (i) the dependent variable, (ii) the independent
variable, or (iii) both. We now show that those FLM are special cases of general smoothing spline
models. Therefore they can be fitted by the ssr function.

To investigate geographical differences in the pattern of the annual tempreture function, Ramsay
and Silverman (1997) divided Canada into four meteorological zones: Atlantic, Pacific, Continental
and Arctic. Then they considered the following FLM (Model (9.1) in Ramsay and Silverman (1997))

tempkg(t) = µ(t) + αg(t) + εkg(t), (87)

where g = 1, 2, 3 and 4 correspond to climate zones Atlantic, Pacific, Continental and Arctic respec-
tively, tempkg(t) is the kth temperature function in the gth zone, µ(t) is the grand mean function,
αg(t) represent zone effect, and εkg(t) are random errors. Model (87) is an example of case (i).

Now consider expected temperature as a function of both zone g and time t: f(g, t) = E(tempkg(t)).
Suppose that we want to model zone effect using an one-way ANOVA model and time effect using a
periodic spline. Then we have the following SS ANOVA decomposition

f(g, t) = f0 + f1(g) + f2(t) + f12(g, t), (88)

where f0 is a constant, f1 and f2 are the main effects of zone and time, and f12 is the interaction
between zone and time. Comparing (87) with (88), it is obvious that µ(t) = f0 + f2(t) and αg(t) =
f1(g) + f12(g, t). Therefore, model (87) can be regarded as an SS ANOVA model. Discretize the
functional response by 12 months, we can fit the data as follows. Dense discretization such as by days
could also be used.

> temps <- matrix(scan(‘‘monthtemp.dat’’,0), 35, 12, byrow=T)

> atlindex <- c(1,2,3,4,5,6,7,8,9,10,11,13,14,16)

> pacindex <- c(25,26,27,28,29)

> conindex <- c(12,15,17,18,19,20,21,22,23,24,30,31,35)

> artindex <- c(32,33,34)

> t <- seq(0.5, 11.5, 1)/12

> tgrid <- seq(0,1,len=50)

> x <- apply(temps,1,sum)

> n <- 35*12

> temp <- as.vector(t(temps[c(atlindex,pacindex,conindex,artindex),]))

> grp <- as.factor(rep(1:4,12*c(14,5,13,3)))

> tempdata <- data.frame(temp=temp,t=rep(t,35),grp=grp)

> canada4 <- ssr(temp ~ grp, spar="m",data=tempdata,

96



rk=list(periodic(t),rk.prod(periodic(t),shrink1(grp))))

> summary(canada4)

Smoothing spline regression fit by GML method

Call: ssr(formula = temp ~ grp, rk = list(periodic(t), rk.prod(periodic(t),

shrink1(grp))), data = tempdata, spar = "m")

Coefficients (d):

(Intercept) grp2 grp3 grp4

4.787500 2.809167 -5.204167 -16.651389

GML estimate(s) of smoothing parameter(s) : 0.2622870 0.9971152

Equivalent Degrees of Freedom (DF): 23.74366

Estimate of sigma: 3.762337

Number of Observations: 420

> grid <- list(grp=as.factor(rep(1:4,rep(50,4))),t=rep(tgrid,4))

> p.canada4 <- predict(canada4,newdata=expand.grid(t=tgrid,grp=as.factor(1:4)),

terms=c(1,1,1,1,0,1))

Figures 47 and 48 display the estimated zone effects and the fits for four regions. They are very
similar to Figures 9.1 and 9.2 in Ramsay and Silverman (1997). In addition to the estimates, we can
provide confidence intervals.

month

Te
m

pe
ra

tu
re

Atlantic

o
o o

o o o o o o o
o o

−2
0

−1
0

0
10

0 2 4 6 8 10 12
month

Te
m

pe
ra

tu
re

Pacific
o

o

o

o

o

o o o
o

o

o

o

−2
0

−1
0

0
10

0 2 4 6 8 10 12

month

Te
m

pe
ra

tu
re

Continental

o
o

o

o o o o o o o

o
o

−2
0

−1
0

0
10

0 2 4 6 8 10 12
month

Te
m

pe
ra

tu
re

Arctic

o

o
o

o

o

o
o o

o

o
o o

−2
0

−1
0

0
10

0 2 4 6 8 10 12

Figure 47: Solid lines are zone effects αg for the temperature functions in model (46). Dashed lines
are 95% Bayesian confidence intervals. Dotted lines are constant zero. Points are regional monthly
averages minus monthly averages of the whole contry plus the average of all temperature observations.

To investigate the possible replationship between total annual precipitation and the temperature

97



month

Te
m

pe
ra

tu
re

Atlantic

o o

o

o

o

o

o o

o

o

o

o

−3
0

−2
0

−1
0

0
10

20

0 2 4 6 8 10 12
month

Te
m

pe
ra

tu
re

Pacific

o

o
o

o

o

o
o o

o

o

o

o

−3
0

−2
0

−1
0

0
10

20

0 2 4 6 8 10 12

month

Te
m

pe
ra

tu
re

Continental

o

o

o

o

o

o
o

o

o

o

o

o

−3
0

−2
0

−1
0

0
10

20

0 2 4 6 8 10 12
month

Te
m

pe
ra

tu
re

Arctic

o o

o

o

o

o

o
o

o

o

o

o

−3
0

−2
0

−1
0

0
10

20

0 2 4 6 8 10 12

Figure 48: Solid lines are estimated region tempreture profiles. The dashed curve is the Canada mean
function µ(t). Points are regional monthly averages.

function, Ramsay and Silverman (1997) considered the following FLM (Model (10.3))

yi = α +

∫ T

0
xi(s)β(s)ds + εi, (89)

where yi is the logarithm of total annual precipitation at station i, α is a constant parameter, xi(t) is
the temperature function at station i, β(t) is a unknown weight function, and εi are random errors.
The goal is to estimate the weight function β(t). Model (89) is an example of case (ii).

Without loss of the generality, suppose that the time interval has been transformed into [0, 1].
That it, T = 1. It is reasonable to assume that β(t) is a smooth periodic function. Specifically, we
model β(t) using cubic periodic spline space W2(per). Define linear functionals Liβ =

∫ T
0 xi(s)β(s)ds.

Li are bounded when xi ∈ L2 which we assume to be true. Then model (89) is a partial spline model.

Denote β(t) = β0 + β1(t) where β1 ∈ W 0
2 (per). Let R be the reproducing kernel (RK) matrix for

β1. From the definition in Section 2.1.1, the ijth elements of the matrix R

R[i, j] = < Li(·)R1(t, ·), Lj(·)R1(t, ·) >= Li(·)Lj(·)R1(·, ·) =

∫ T

0

∫ T

0
xi(s)xj(t)R1(s, t)dsdt

≈
12∑

k=1

12∑

k=1

xi(sk)xj(tl)R1(sk, tl) = xT
i Σxj , (90)

where R1 is the RK of W 0
2 (per), sk and tk represnet middle point of month k, xi(sk) is the temperature

of month k at station i, xi = (xi(s1), · · · , xi(s12))
T , and Σ = {R1(sk, tl)}

12
k,l=1. We used simple

summations to approximate the integrals. More accurate approximations can be used. We also
ignored a scaling constant (1/12) since it can be absorbed by the smoothing parameter.

> prec <- matrix(scan(‘‘monthprec.dat’’,0), 35, 12, byrow=T)

> y <- log(apply(prec,1,sum))

98



> R <- temps %*% periodic(t) %*% t(temps)

> canada5 <- ssr(y ~ x, rk=R)

> summary(canada5)

Smoothing spline regression fit by GML method

Call: ssr(formula = y ~ x, rk = R, spar = "m")

Coefficients (d):

(Intercept) x

6.433069274 0.006122233

GML estimate(s) of smoothing parameter(s) : 0.006772994

Equivalent Degrees of Freedom (DF): 4.062615

Estimate of sigma: 0.3588121

Number of Observations: 35

The estimated weight function β is represented by

β̂(t) = d2 +
n∑

i=1

ciLi(·)R1(t, ·),

where d1 is an estimate of α. To compute β̂(t) at grid points t0 of size n0,

β̂(t0) = d21n0
+

n∑

i=1

ci

∫ T

0
R1(t0, s)xi(s)ds ≈ d21n0

+
n∑

i=1

ci

12∑

j=1

R1(t0, sj)xi(sj)

= d21n0
+

n∑

i=1

ciR1(t0, s)xi = d21n0
+ Sc

where 1a is a vector of 1’s of size a, s = (s1, · · · , s12)
T , S = R1(t0, s)XT , R1 is the RK of W 0

2 (per),
R1(t0, s) is a n0 × 12 matrix of R1 evaluated at all combinations of t0 and s, X is a n × 12 matrix
with each row consists monthly tempretures at each station, and c = (c1, · · · , cn)T .

Bayesian confidence intervals are not available for non-evaluational functionals. Therefore we use
the following bootstrap procedure to compute confidence intervals. We used simple percentile intervals.
Other approaches may be used (Wang and Wahba 1995).

> S <- periodic(tgrid,t)%*%t(temps)

> f <- canada5$coef$d[2] + S%*%canada5$coef$c

> nboot <- 999

> fb <- NULL

> for (i in 1:nboot) {

yb <- canada5$fit+sample(canada5$resi,35,replace=T)

bfit <- ssr(yb ~ x, rk=R)

fb <- cbind(fb,bfit$coef$d[2] + S%*%bfit$coef$c)

}

> lb <- apply(fb,1,quantile,prob=.025)

> ub <- apply(fb,1,quantile,prob=.975)

99



We used the default GCV method to select the smoothing parameter in the above computation.
We repeated the computation with the GML method to select the smoothing parameter. Figure 49
displays the estimated regression weight functions. It is interesting to note that the estimates with
GCV and GML choices of the smoothing parameter are similar to the upper left plot and the lower
right plot in Figure 10.3 of Ramsay and Silverman (1997). As indicated in Figure 10.6 of Ramsay and
Silverman (1997) that it is difficult to get a precise estimate of the smoothing parameter due to the
small sample size. Interestingly that the GCV method picks an estimate of the smoothing parameter
that is close to the lower bound and the GML method picks an estimate that is close to the upper
bound. Wide confidence intervals are the consequence of the small sample size (n = 35).

month

w
ei

gh
t f

un
ct

io
n

GCV choice of smoothing parameter

−
0.

4
−

0.
2

0.
0

0.
2

0 2 4 6 8 10 12
month

w
ei

gh
t f

un
ct

io
n

GML choice of smoothing parameter

−
0.

04
0.

00
0.

02
0.

04
0.

06

0 2 4 6 8 10 12

Figure 49: Estimated regression weight function β (solid lines) and its 95% bootstrap confidence
intervals (dashed lines) with GCV (left) and GML (right) choices of the smoothing parameter.

To investigate the dependence of the complete log precipitation profile on the complete tempreture
profile, Ramsay and Silverman (1997) considered the following FLM

yi(t) = α(t) +

∫ T

0
xi(s)β(s, t)ds + εi(t), (91)

where yi(t) is the logarithm of annual precipitation profile at station i, α(t) plays the part of an
intercept in the standard regression, xi(s) is the temperature function at station i, β(s, t) is a unknown
weight function at time t, and εi(t) are random errors processes. The goal is to estimate α(t) and
β(s, t). Model (91) is an example of case (iii).

The expected annual precipitation profile depends on two non-parametric functions: α and β.
Again, we assume that T = 1, and α(t) and β(s, t) are smooth periodic functions. Specifically, we
assume that α(t) ∈ W2(per) = span{1} ⊕ W 0

2 (per), and β(s, t) ∈ W2(per) ⊗ W2(per) = (span{1} ⊕
W 0

2 (per))⊗(span{1}⊕W 0
2 (per)) = span{1}⊕(W 0

2 (per)⊗span{1})⊕(span{1}⊗W 0
2 (per))⊕(W 0

2 (per)⊗
W 0

2 (per)). Equivalently, we use the following SS ANOVA decomposition for α and β:

α(t) = α0 + α1(t),

β(s, t) = β0 + β1(s) + β2(t) + β12(s, t). (92)

100



Again, we discretize the annual precipitation profile by 12 months. Model (91) becomes

yi(tj) = α(tj) +

∫ T

0
xi(s)β(s, tj)ds + εi(tj)

= α0 + α1(tj) + β0zi +

∫ T

0
xi(s)β1(s)ds + ziβ2(tj) +

∫ T

0
xi(s)β12(s, tj)ds + εi(tj), (93)

i = 1, · · · , n, j = 1, · · · , m,

where yi(tj) is the logarithm of precipitation in month j at station i, n = 35, m = 12, and zi =
∫ T
0 xi(s)ds. For simplicity, we assume random errors are independent. Models with correlated random

errors can be fitted similarly.

Let y = (y1(t1), · · · , y1(tm), · · · , yn(t1), · · · , yn(tm))T , z = (z1, · · · , zn)T , α1 = (α(t1), · · · , α(tm))T ,
β1 = (

∫ T
0 x1(s)β1(s)ds, · · · ,

∫ T
0 xn(s)β1(s)ds)T , β2 = (β2(t1), · · · , β2(tm))T ,

β12 = (
∫ T
0 x1(s)β12(s, t1)ds, · · · ,

∫ T
0 x1(s)β12(s, tm)ds, · · · ,

∫ T
0 xn(s)β12(s, t1)ds, · · · ,

∫ T
0 xn(s)β12(s, tm)ds),

and ε = (ε1(t1), · · · , ε1(tm), · · · , εn(t1), · · · , εn(tm))T .

Then model (94) can be written in a matrix form

y = α01mn + 1n ⊗ α1 + β0z ⊗ 1m + β1 ⊗ 1m + z ⊗ β2 + β12 + ε. (94)

We have two parametric terms, α0 and β0, and four non-parametric terms, α1, β1, β2 and β12, in
model (94). To fit this model, we need to find RK matrices for four non-parametric terms. It is not
difficult to see that the RK matrices for α1, β1 and β2 are Σ1 = 1n⊗1T

n ⊗R1(t, t), Σ2 = R⊗1m⊗1T
m,

Σ3 = z ⊗ zT ⊗ R1(t, t), where R1 is the RK of W 0
2 (per), t = (t1, · · · , tm)T , R1(t, t) represents a

m×m matrix of R1 evaluated at all combinations of (ti, tj), and R is a n× n matrix defined in (90).

To compute the RK matrix for β12, we define the linear functional Lijβ12 =
∫ T
0 xi(s)β12(s, tj)ds and

assume that it is bounded. Since the RK of a tensor product space is the product of the two RK’s,
the RK of W 0

2 (per)⊗W 0
2 (per) is R1(s, u)R1(t, v). Then elements of the repreducing kernel matrix for

β12 is

LijLklR1(s, u)R1(t, v) = R1(tj , vl)

∫ T

0

∫ T

0
xi(s)xk(u)R1(s, u)dsdu.

Thus the RK matrix for β12 is Σ4 = rk.prod(Σ2, Σ3), where rk.prod prepresents elementwise product
of two matrices.

> prec <- matrix(scan(‘‘monthprec.dat’’,0), 35, 12, byrow=T)

> y <- as.vector(t(log(prec)))

> xx <- rep(x,rep(12,35))

> R1 <- kronecker(matrix(1,35,35),periodic(t))

> R2 <- kronecker(R,matrix(1,12,12))

> R3 <- kronecker(x%*%t(x),periodic(t))

> R4 <- rk.prod(R1,R2)

> canada6 <- ssr(y ~ xx, rk=list(R1,R2,R3,R4))

> summary(canada6)

Smoothing spline regression fit by GCV method

Call: ssr(formula = y ~ xx, rk = list(R1, R2, R3, R4))

101



Coefficients (d):

(Intercept) xx

4.745601623 0.003035296

GCV estimate(s) of smoothing parameter(s) :

1.727184e+03 3.630885e-02 1.416582e+07 4.597862e-04

Equivalent Degrees of Freedom (DF): 60.52553

Estimate of sigma: 0.3549322

Number of Observations: 420

We now show how to compute estimated functions evaluated at grid points. We stacked all
observations as y. Denote the corresponding months for y as t̃ = (tT , · · · , tT )T . Denote N = mn as
the total number of observations. Then the estimated functions are represented by

α̂(t) = d1 + Nλ1

N∑

i=1

ciR1(t, t̃i),

β̂1(s) = Nλ2

N∑

i=1

ci

∫ T

0
x[i/m]+1(u)R1(s, u)du,

β̂2(t) = Nλ3

N∑

i=1

ci

(
∫ T

0
x[i/m]+1(u)du

)

R1(t, t̃i),

β̂12(s, t) = Nλ4

N∑

i=1

ci

∫ T

0
x[i/m]+1(u)R1(s, u)duR1(t, t̃i),

where [i/m] is the integer part of i/m. To compute α̂, β̂1(s), β̂2(t) at grid points s0 and t0 for s and
t respectively,

α̂(t0) = d11n0
+ Nλ1

N∑

i=1

ciR1(t0, t̃i) = d11n0
+ Nλ1S1c,

β̂1(s0) = Nλ2

N∑

i=1

ci

∫ T

0
x[i/m]+1(u)R1(s0, u)du ≈ Nλ2

N∑

i=1

ci

m∑

j=1

R1(s0, sj)x[i/m]+1(sj)

= Nλ2

N∑

i=1

ciR1(s0, s)x[i/m]+1 = Nλ2S2c,

β̂2(t0) = Nλ3

N∑

i=1

ci

(
∫ T

0
x[i/m]+1(s)ds

)

R1(t0, t̃i) = Nλ3S3c

where S1 = 1T
n ⊗ R1(t0, t), S2 = S ⊗ 1T

m, and S3 = zT ⊗ R1(t0, t). The interaction β12 is a bivariate
function. Thus we evaluate it at a bivariate grid s0 ⊗ t0 = {(s0k, t0l) : k, l = 1, · · · , n0}:

β̂12(s0k, t0l) = Nλ4

N∑

i=1

ci

∫ T

0
x[i/m]+1(u)R1(s0k, u)duR1(t0l, t̃i) ≈ Nλ4

N∑

i=1

ciS2[k, i]S1[l, i] = Nλ4S4c,

where S4 is a n2
0 × N matrix with S4[(k − 1)n0 + l, i] = S2[k, i]S1[l, i]. We also compute bootstrap

confidence intervals.

102



> S1 <- kronecker(t(rep(1,35)),periodic(tgrid,t))

> S2 <- kronecker(S,t(rep(1,12)))

> S3 <- kronecker(t(x),periodic(tgrid,t))

> S4 <- NULL

> for (i in 1:50) {for (j in 1:50) S4 <- rbind(S4,S1[i,]*S2[j,])}

> alpha <- canada6$coef$d[1] + n*canada6$lambda[1]*S1%*%canada6$coef$c

> beta0 <- canada6$coef$d[2]

> beta1 <- n*canada6$lambda[2]*S2%*%canada6$coef$c

> beta2 <- n*canada6$lambda[3]*S3%*%canada6$coef$c

> beta12 <- n*canada6$lambda[4]*S4%*%canada6$coef$c

> beta <- beta0 + rep(beta1,rep(50,50)) + rep(beta2,50) + beta12

> nboot <- 99

> alphab <- betab0 <- betab1 <- betab2 <- betab12 <- betab <- NULL

> for (i in 1:nboot) {

yb <- canada6$fit+rnorm(n,sd=canada6$sig)

bfit <- ssr(yb ~ xx, rk=list(R1,R2,R3,R4))

alphab <- cbind(alphab,bfit$coef$d[1] + n*bfit$lambda[1]*S1%*%bfit$coef$c)

bb0 <- bfit$coef$d[2]

bb1 <- n*bfit$lambda[2]*S2%*%bfit$coef$c

bb2 <- n*bfit$lambda[3]*S3%*%bfit$coef$c

bb12 <- n*bfit$lambda[4]*S4%*%bfit$coef$c

betab0 <- c(betab0,bb0)

betab1 <- cbind(betab1,bb1)

betab2 <- cbind(betab2,bb2)

betab12 <- cbind(betab12,bb12)

betab <- cbind(betab, bb0 + rep(bb1,rep(50,50)) + rep(bb2,50) + bb12)

}

> lba <- apply(alphab,1,quantile,prob=.025)

> uba <- apply(alphab,1,quantile,prob=.975)

> lbb1 <- apply(betab1,1,quantile,prob=.025)

> ubb1 <- apply(betab1,1,quantile,prob=.975)

> lbb2 <- apply(betab2,1,quantile,prob=.025)

> ubb2 <- apply(betab2,1,quantile,prob=.975)

> lbb12 <- apply(betab12,1,quantile,prob=.025)

> ubb12 <- apply(betab12,1,quantile,prob=.975)

> lbb <- apply(betab,1,quantile,prob=.025)

> ubb <- apply(betab,1,quantile,prob=.975)

Figure 50 displays the estimates of β12(s, t) and β(s, t). The scale, as well as the GCV estimates
of the smoothing parameters (λ4 = 4.597862e − 04), indicate that the interaction β12 is not small.
Figures 51 and 52 display splices of the estimated interaction function β12 and their 95% bootstrap
confidence intervals with one variable fixed approximately at the middle points of 12 months. Figures
53 and 54 display splices of the estimated function β and their 95% bootstrap confidence intervals
with one variable fixed approximately at the middle points of 12 months. Figure 55 displays estimates
of α, β1 and β2 functions.

103



s

0.0

0.2

0.4

0.6

0.8

1.0

t

0.0

0.2

0.4

0.6

0.8

1.0

beta12(s,t)

−0.15

−0.10

−0.05

0.00

0.05

0.10

s

0.0

0.2

0.4

0.6

0.8

1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

beta(s,t)

−0.4

−0.2

0.0

0.2

Figure 50: Estimated β12 (left) and β (right) functions with GCV choice of the smoothing parameter.

s

be
ta

12

−0.1

0.0

0.1

0.0 0.4 0.8

7 8

0.0 0.4 0.8

9 10

0.0 0.4 0.8

11 12

1 2

0.0 0.4 0.8

3 4

0.0 0.4 0.8

5

−0.1

0.0

0.1

6

0.0 0.4 0.8

Figure 51: Estimated β12(s, t) as a function of s with t fixed approximately at the middle points of 12
months.

104



t

be
ta

12

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.0 0.4 0.8

7 8

0.0 0.4 0.8

9 10

0.0 0.4 0.8

11 12

1 2

0.0 0.4 0.8

3 4

0.0 0.4 0.8

5

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
6

0.0 0.4 0.8

Figure 52: Estimated β12(s, t) as a function of t with s fixed approximately at the middle points of 12
months.

s

be
ta

−0.4

−0.2

0.0

0.2

0.4

0.0 0.4 0.8

7 8

0.0 0.4 0.8

9 10

0.0 0.4 0.8

11 12

1 2

0.0 0.4 0.8

3 4

0.0 0.4 0.8

5

−0.4

−0.2

0.0

0.2

0.4
6

0.0 0.4 0.8

Figure 53: Estimated β(s, t) as a function of s with t fixed approximately at the middle points of 12
months.

105



t

be
ta

−0.4

−0.2

0.0

0.2

0.4

0.0 0.4 0.8

7 8

0.0 0.4 0.8

9 10

0.0 0.4 0.8

11 12

1 2

0.0 0.4 0.8

3 4

0.0 0.4 0.8

5

−0.4

−0.2

0.0

0.2

0.4
6

0.0 0.4 0.8

Figure 54: Estimated β(s, t) as a function of t with s fixed approximately at the middle points of 12
months.

0.0 0.2 0.4 0.6 0.8 1.0

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

t

al
ph

a(
t)

Estimate of alpha(t)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

s

be
at

1(
s)

Estimate of beta1(s)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

01
0

0.
00

0
0.

00
5

0.
01

0

t

be
at

2(
t)

Estimate of beta2(t)

Figure 55: Estimates of α(t) (left), β1(s) (middle) and β2 (right) functions.

106



We also fit the data using the GML choice of the smoothing parameter.

> canada6.1 <- ssr(y ~ xx, rk=list(R1,R2,R3,R4),spar="m")

> summary(canada6.1)

Smoothing spline regression fit by GML method

Call: ssr(formula = y ~ xx, rk = list(R1, R2, R3, R4), spar = "m")

Coefficients (d):

(Intercept) xx

4.7327087 0.0030902

GML estimate(s) of smoothing parameter(s) :

7.195469e-01 4.852421e-02 3.633548e+04 3.613019e+00

Equivalent Degrees of Freedom (DF): 27.24519

Estimate of sigma: 0.3733665

Number of Observations: 420

The GML estimates of smoothing parameters indicates that both the interaction β12 and the
main effect β2 are small. Figure 56 displays the estimates of β12(s, t) and β(s, t). Figure 57 displays
estimates of α, β1 and β2 functions.

s

0.0

0.2

0.4

0.6

0.8

1.0

t

0.0

0.2

0.4

0.6

0.8

1.0

beta12(s,t)

−0.010

−0.005

0.000

0.005

0.010

s

0.0

0.2

0.4

0.6

0.8

1.0

t

0.0

0.2

0.4

0.6

0.8

1.0

beta(s,t)

−0.3

−0.2

−0.1

0.0

0.1

0.2

Figure 56: Estimated β12 (left) and β (right) functions with GML choice of the smoothing parameter.

8.12 Human Circadian Rhythms

Medical studies often collect physiological and/or psychological measurements over time from multiple
subjects in order to study dynamics such as circadian rhythms and interactions between variables.
Experiments are typically conducted in such a way that variables of interest are measured several times
during a time period, e.g. 24 hours, from a group of normal (or ill) human subjects. The problems

107



0.0 0.2 0.4 0.6 0.8 1.0

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

t

al
ph

a(
t)

Estimate of  alpha(t)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

s

be
at

1(
s)

Estimate of  beta1(s)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

01
0

0.
00

0
0.

00
5

0.
01

0

t

be
at

2(
t)

Estimate of  beta2(t)

Figure 57: Estimates of α(t) (left), β1(s) (middle) and β2 (right) functions with GML choice of the
smoothing parameter.

of interest are: (1) do circadian rhythms exist? (2) do demographic, environmental and psychological
variables affect circadian rhythms, and if so, how? and (3) how are variables associated with each
other?

In an experiment to study immunological responses in humans, blood samples were collected every
two hours for 24 hours from 9 healthy normal volunteers, 11 patients with major depression and 16
patients with Cushing’s disease. These blood samples were analyzed for parameters that measure
immune functions and hormones of the HPA axis (Kronfol, Nair, Zhang, Hill and Brown 1997). We
will concentrate on one hormone: cortisol (cort).The data frame horm.cort contains the following
variables: ID of subjects, time when measurements are taken, hormone measurements conc, and
subject type (normal, depression, cushing). For simplicity, the time variable of 24-hour period is
transformed into [0,1].

Observations are shown in Figures 59, 60 and 61. The data are noisy and it is difficult to identify
patterns among subjects. The investigator hypothesizes that there is a common curve for all indi-
viduals. However, the time axis may be shifted and the magnitude of the values may differ between
subjects; i.e., there may be phase and amplitude differences between subjects. Since the 24-hour
periodicity is entrained, the cycle length is fixed. The common practice is to fit a sinusoidal function
to each subject. Problems with this approach are: (1) the pattern over time may not be symmetric.
That is, the peak and nadir may not be separated by 12 hours and/or the amplitude and width of the
peak may differ from those of the nadir; (2) sometimes there are local minimum and maximum points
(Wang and Brown 1996). Although adding harmonics can improve the fit, it is difficult to decide how
many harmonics to include in the model and the results are difficult to interpret.

We first show how to fit a SIM to this kind of data. Consider the following model (Wang and
Brown 1996)

yij = φ1i + exp(φ2i)f(tij − exp(φ3i)/(1 + exp(φ3i))) + εij ,

i = 1, · · · , m, j = 1, · · · , ni, (95)

where m is the total number of subjects, ni is the number of observations for subject i, yij is the
response of ith individual at the jth time point tij , φ1i is the 24-hour mean of the ith individual,
exp(φ2i) is the amplitude of the ith individual where exponential transformation is used to enforce
positive constraint, exp(φ3i)/(1+exp(φ3i)) is the phase of the ith individual where the inverse logistic

108



transformation forces the phase inside the interval [0,1]. εij are random errors and εij
iid
∼ N(0, σ2).

The function f is the common curve. Since it is a periodic function, we use periodic spline to model
f . In order to make f identifiable with φ1i, we use the side condition

∫ 1
0 f = 0 which is equivalent to

removing the constant from the model space. Thus we assume that f ∈ W 0
2 (per). In order to make

φ2i and φ3i identifiable with f , we add constraints: φ21 = φ31 = 0.

We now fit model (95) to cortisol measurements from normal subjects.

> options(contrasts=c("contr.treatment", "contr.poly"))

> data(horm.cort)

> cort.nor <- horm.cort[horm.cort$type=="normal",]

> M <- model.matrix(~as.factor(ID), data=cort.nor)[,-1]

> cort.nor.snr.fit1 <- snr(conc~b1+exp(b2)*f(time-alogit(b3)),

func=f(u)~list(periodic(u)),params=list(b1~as.factor(ID), b2+b3~M-1),

start=list(params=c(mean(cort.nor$conc),rep(0,24))), data=cort.nor,

spar="m", control=list(prec.out=0.001,converg="PRSS"))

> summary(cort.nor.snr.fit1)

Semi-parametric Nonlinear Regression Model Fit

Model: horm ~ b1 + exp(b2) * f(time - alogit(b3))

Data: cort.nor.dat

AIC BIC logLik

113.9554 183.449 -30.9777

Coefficients:

...

Standardized residuals:

Min Q1 Med Q3 Max

-2.11257 -0.5740086 0.04326369 0.5185883 2.521769

GML estimate(s) of smoothing spline parameter(s): 1.505551e-06

Equivalent Degrees of Freedom (DF) for spline function: 10.13926

Degrees of freedom: 107 total; 71.86074 residual

Residual standard error: 0.4213113

Converged after 5 iterations

Notice that we used the option converg=”PRSS” instead of the default converg=”COEF” because
this option usually requires fewer number of iterations (the same is true for the snm function). We
also relaxed the tolerance for convergence criterion. The potential risk of these options is that the
algorithm may stop too early. The fits shown in Figure 58 seems adequate.

Random errors in model (95) may be correlated. In the following we fit with an AR(1) within-
subject correlation structure.

> cort.nor.snr.fit2 <- update(cort.nor.snr.fit1, cor=corAR1(form=~1|ID))

> summary(cort.nor.snr.fit2)

Semi-parametric Nonlinear Regression Model Fit

109



0

1

2

3

8007

0.0 0.2 0.4 0.6 0.8 1.0

8008 8009

0.0 0.2 0.4 0.6 0.8 1.0

8004 8005

0

1

2

3

8006

0

1

2

3

8001 8002

0.0 0.2 0.4 0.6 0.8 1.0

8003

time

C
or

tis
ol

 c
on

ce
nt

ra
tio

n 
on

 lo
g 

sc
al

e

Figure 58: Plots of the data and fitted curves. Circles are observations. Solid lines represent fits from
cort.nor.snr.fit.1. Subjects’ ID are shown in the strip.

110



Model: conc ~ b1 + exp(b2) * f(time - alogit(b3))

Data: cort.nor

AIC BIC logLik

117.6520 189.8184 -31.82602

Correlation Structure: AR(1)

Formula: ~1 | ID

Parameter estimate(s):

Phi

-0.1641137

Coefficients:

...

GML estimate(s) of smoothing spline parameter(s): 0.0001425255

Equivalent Degrees of Freedom (DF) for spline function: 10.33217

Residual standard error: 0.4311652

Converged after 5 iterations

The lag 1 autocorrelation coefficient is small.

Parameters φ1i, φ2i and φ3i in model (95) are deterministic. Thus model (58) has following
drawbacks: (1) they ignore correlations among observations; (2) they have the number of parameters
proportional to the number of subjects; and (3) it is difficult to investigate covariate effects on param-
eters and/or the common curve. In the remaining of this section we show how to fit hormone data
using SNM models.

We first show how to fit individual hormone for each group. Consider the following model

yij = µ + b1i + exp(b2i)f(tij − exp(b3i)/(1 + exp(b3i))) + εij ,

i = 1, · · · , m, j = 1, · · · , ni, (96)

where the fixed effect µ represents 24-hour mean of the population, the random effects b1i, b2i and
b3i represent the ith subject’s deviation of 24-hour mean, amplitude and phase. We assume that

f ∈ W 0
2 (per) and bi = (b1i, b2i, b3i)

T iid
∼ N(0, σ2D), where D is an unstructured positive-definite

matrix. The assumption of zero population mean for amplitude and phase takes care of potential
confounding between amplitude, phase and the nonparametric common function f in a natural way.

We now fit model (96) to cortisol measurements from normal subjects.

> cort.nor.fit1 <- snm(conc~b1+exp(b2)*f(time-alogit(b3)),

func=f(u)~list(periodic(u)), data=cort.nor, fixed=list(b1~1),

random=list(b1+b2+b3~1), start=c(mean(cort.nor$conc)), groups=~ID,

spar="m", control=list(prec.out=0.005,converg="PRSS"))

> summary(cort.nor.fit1)

Semi-parametric Nonlinear Mixed Effects Model fit

Model: conc ~ b1 + exp(b2) * f(time - alogit(b3))

Data: cort.nor

111



AIC BIC logLik

176.4104 224.4590 -70.2004

Random effects:

Formula: list(b1 ~ 1, b2 ~ 1, b3 ~ 1)

Level: ID

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

b1 0.2475622 b1 b2

b2 0.1889174 -0.629

b3 0.2483884 0.035 -0.479

Residual 0.3948469

Fixed effects: list(b1 ~ 1)

Value Std.Error DF t-value p-value

b1 1.670316 0.07686368 98 21.73089 <.0001

GML estimate(s) of smoothing parameter(s): 0.0001218930

Equivalent Degrees of Freedom (DF): 10.00480

Converged after 4 iterations

> cort.dep <- horm.cort[horm.cort$type=="depression",]

> cort.dep.fit1 <- snm(conc~b1+exp(b2)*f(time-alogit(b3)),

func=f(u)~list(periodic(u)), data=cort.dep, fixed=list(b1~1),

random=list(b1+b2+b3~1), start=c(mean(cort.dep$conc)), groups=~ID,

spar="m", control=list(prec.out=0.005,converg="PRSS"))

> summary(cort.dep.fit1)

Semi-parametric Nonlinear Mixed Effects Model fit

Model: conc ~ b1 + exp(b2) * f(time - alogit(b3))

Data: cort.dep

AIC BIC logLik

248.2489 293.5048 -108.4047

Random effects:

Formula: list(b1 ~ 1, b2 ~ 1, b3 ~ 1)

Level: ID

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

b1 0.4139559 b1 b2

b2 0.3883549 -0.815

b3 0.3806670 0.195 -0.099

Residual 0.4390506

112



Fixed effects: list(b1 ~ 1)

Value Std.Error DF t-value p-value

b1 1.956112 0.09046153 121 21.62369 <.0001

GML estimate(s) of smoothing parameter(s): 0.0005380155

Equivalent Degrees of Freedom (DF): 7.719702

Converged after 5 iterations

> cort.cush <- horm.cort[horm.cort$type=="cushing",]

> cort.cush.fit1 <- snm(conc~b1+exp(b2)*f(time-alogit(b3)),

func=f(u)~list(periodic(u)), data=cort.cush, fixed=list(b1~1),

random=list(b1+b2+b3~1), start=c(mean(cort.cush$conc)), groups=~ID,

spar="m", control=list(prec.out=0.005,converg="PRSS"))

> summary(cort.cush.fit1)

Model: conc ~ b1 + exp(b2) * f(time - alogit(b3))

Data: cort.cush

AIC BIC logLik

-38.94984 -13.18616 27.47518

Random effects:

Formula: list(b1 ~ 1, b2 ~ 1, b3 ~ 1)

Level: ID

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

b1 3.429996e-01 b1 b2

b2 1.028451e+04 -0.690

b3 6.520918e+03 -0.107 0.593

Residual 1.685278e-01

Fixed effects: list(b1 ~ 1)

Value Std.Error DF t-value p-value

b1 3.034334 0.07610914 170 39.8682 <.0001

GML estimate(s) of smoothing parameter(s): 999.9996

Equivalent Degrees of Freedom (DF): 0.0002583048

Converged after 2 iterations

The fits are shown in Figures 59, 60 and 61.

We calculate the posterior means and variances of the common function f for all three groups:

u <- seq(0,1,len=50)

cort.nor.ci <- intervals(cort.nor.fit.1, newdata=data.frame(u=u))

cort.dep.ci <- intervals(cort.dep.fit.1, newdata=data.frame(u=u))

cort.cush.ci <- intervals(cort.cush.fit.1, newdata=data.frame(u=u))

113



0

1

2

3

8007

0.0 0.2 0.4 0.6 0.8 1.0

8008 8009

0.0 0.2 0.4 0.6 0.8 1.0

8004 8005

0

1

2

3

8006

0

1

2

3

8001 8002

0.0 0.2 0.4 0.6 0.8 1.0

8003

time

C
or

tis
ol

 c
on

ce
nt

ra
tio

n 
on

 lo
g 

sc
al

e

Figure 59: Plots of the data and fitted curves. Circles are observations. Solid lines represent fits from
cort.nordep.fit.3. Dotted lines represent fits from cort.nor.fit.1. Subjects’ ID are shown in
the strip.

114



0

1

2

3

122

0.0 0.2 0.4 0.6 0.8 1.0

123 124

0.0 0.2 0.4 0.6 0.8 1.0

117 118

0

1

2

3

119

0

1

2

3

113 115 116

111

0

1

2

3

112

0.0 0.2 0.4 0.6 0.8 1.0

time

C
or

tis
ol

 c
on

ce
nt

ra
tio

n 
on

 lo
g 

sc
al

e

Figure 60: Plots of the data and fitted curves. Circles are observations. Solid lines represent fits from
cort.nordep.fit.3. Dotted lines represent fits from cort.dep.fit.1. Subjects’ ID are shown in
the strip.

115



2.5

3.0

3.5

4.0

3066

0.0 0.2 0.4 0.6 0.8 1.0

3067 3069

0.0 0.2 0.4 0.6 0.8 1.0

3075

3053 3056 3061

2.5

3.0

3.5

4.0

3064

2.5

3.0

3.5

4.0

3044 3045 3048 3049

3039 3040

0.0 0.2 0.4 0.6 0.8 1.0

3042

2.5

3.0

3.5

4.0

3043

0.0 0.2 0.4 0.6 0.8 1.0

time

C
or

tis
ol

 c
on

ce
nt

ra
tio

n 
on

 lo
g 

sc
al

e

Figure 61: Plots of the data and fitted curves. Circles are observations. Solid lines represent fits from
cort.cush.fit.1. Subjects’ ID are shown in the strip.

116



The estimated common functions are shown in Figure 97 together with their 95% Bayesian confidence
intervals.

time
0.0 0.2 0.4 0.6 0.8 1.0

-3
-2

-1
0

1
2

time
0.0 0.2 0.4 0.6 0.8 1.0

time
0.0 0.2 0.4 0.6 0.8 1.0

time
0.0 0.2 0.4 0.6 0.8 1.0

Figure 62: Solid lines are estimates of the common functions and dotted lines are 95% Bayesian
confidence intervals. The left three panels are estimates from cort.nor.fit.1, cort.dep.fit.1 and
cort.cush.fit.1 respectively. The right panel is the estimate from cort.nordep.fit.3.

It is obvious that the common function for Cushing group is almost zero, which suggests that
circadian rhythms are lost for Cushing patients except subjects 3044 and 3069. It seems that the
shape functions for normal and depression groups are similar. We now test this hypothesis by fitting
data from these two groups simultaneous. Consider the following model

yijk = µk + b1ik + exp(b2ik)f(k, tijk − exp(b3ik)/(1 + exp(b3ik))) + εijk,

i = 1, · · · , m, j = 1, · · · , ni, k = 1, 2, (97)

where k represents group with k = 1 and k = 2 correspond to depression and normal groups
respectively, fixed effects µk is the population 24-hour mean of group k, random effects b1ik, b2ik

and b3ik represent the ith subject’s deviation of 24-hour mean, amplitude and phase. Note that
subjects are nested within group, even though this is not made explicit in out notations. We allow
different correlation structures for the random effects in each group. That is, we assume that bik =

(b1ik, b2ik, b3ik)
T iid

∼ N(0, σ2Dk), where Dk’s are unstructured positive-definite matrices. We assume
different common functions for each group. Thus f is a function of both group (denoted as k) and
time (denoted as t). We model group effect using an one-way ANOVA effect model and time effect
using a periodic spline model without the constant term. That is, we assume that f ∈ R2 ⊗W 0

2 (per).
Writing R2 = {1} ⊕ {g :

∑2
k=1 g(k) = 0}, we have the following SS ANOVA decomposition

R2 ⊗ W 0
2 (per) = W 0

2 (per) ⊕ {g :
2∑

k=1

g(k) = 0} ⊗ W 0
2 (per),

117



or equivalently,

f(k, t) = s(t) + ss(k, t), (98)

where s(t) is the main effect of time, and ss(k, t) is the interaction between group and time. The
hypothesis H0 : f(1, t) = f(2, t) is equivalent to H0 : ss(k, t) = 0. We now fit model (97). Note that
pdStrat is not available currently for the R version of nlme. The following results were based on the
old S-Plus version.

> cort.nordep.dat <- horm[horm$type=="cort"&horm$group!="cushing",]

> cort.nordep.dat$group <- as.vector(cort.nordep.dat$group)

> cort.nordep.fit.1 <- snm(horm~b1+exp(b2)*f(group,time-alogit(b3)),

func=f(g,u)~list(list(periodic(u),

rk.prod(shrink1(g),periodic(u)))),

data=cort.nordep.dat, fixed=list(b1~group),

random=pdStrat(b1+b2+b3~1,strata=~as.factor(group)),

weights=varIdent(form=~1|group),

control=list(prec.out=0.005,converg="PRSS"),

spar="m", start=c(1.8,-.2), groups=~ID)

> summary(cort.nordep.fit.1)

Semi-parametric Nonlinear Mixed Effects Model fit

Model: cort ~ b1 + exp(b2) * f(group, time - alogit(b3))

Data: cort.nordep.dat

AIC BIC logLik

430.7103 516.9962 -190.4965

Random effects:

Formula: list(b1 ~ 1, b2 ~ 1, b3 ~ 1)

Level: ID

Structure: General positive-definite stratified by as.factor(group)

Stratum: depression

StdDev Corr

b1.(Intercept) 0.4025420 b1.(I) b2

b2 0.3441774 -0.779

b3 0.3352246 0.080 -0.013

Stratum: normal

StdDev Corr

b1.(Intercept) 0.2526908 b1.(I) b2

b2 0.2352516 -0.535

b3 0.2431394 -0.050 -0.384

Within-group standard deviation: 0.4516581

Variance function:

Structure: Different standard deviations per stratum

Formula: ~ 1 | group

Parameter estimates:

118



depression normal

1 0.9344799

Fixed effects: list(b1 ~ group)

Value Std.Error DF t-value p-value

b1.(Intercept) 1.860474 0.0962724 218 19.32511 <.0001

b1.group -0.160235 0.1274092 218 -1.25764 0.2099

Correlation:

b1.(I)

b1.group -0.756

GML estimate(s) of smoothing parameter(s): 5.037821e-04 1.487554e+02

Equivalent Degrees of Freedom (DF): 8.858698

Converged after 4 iterations

> u <- seq(0,1,len=50)

> cort.nordep.ci <- intervals(cort.nordep.fit.1, newdata=data.frame(

g=rep(c("normal","depression"),c(50,50)),u=rep(u,2)),

terms=c(0,1))

The smoothing parameter for the interaction term ss(k, t) is large, which means that the interaction
is small. In fact, ss(k, t) is essentially zero: the posterior means are on the magnitude of 10−6 while
the posterior standard deviations are on the magnitude of 10−4. Therefore normal and depression

groups have the same shape function.

Under the assumption of one shape function for both groups, we now can investigate differences
of 24-hour mean, amplitude, and phase between two groups. For this purpose, consider the following
model

yijk = µk + b1ik + exp(b2ik + d1 × I(k = 2)) ×

f(tijk − exp(b3ik + d2 × I(k = 2))/(1 + exp(b3ik + d2 × I(k = 2)))) + εijk,

i = 1, · · · , m, j = 1, · · · , ni, k = 1, 2, (99)

where d1 and d2 measures the differences of amplitude and phase between normal and depression

groups.

> cort.nordep.fit.2 <- snm(horm~b1+exp(b2+d1*I(group=="normal"))*

f(time-alogit(b3+d2*I(group=="normal"))),

func=f(u)~list(periodic(u)),

data=cort.nordep.dat,

fixed=list(b1~group,d1+d2~1),

random=pdStrat(b1+b2+b3~1,strata=~as.factor(group)),

weights=varIdent(form=~1|group),

control=list(prec.out=0.005,converg="PRSS"),

spar="m", start=c(1.9,-0.3,0,0), groups=~ID)

> summary(cort.nordep.fit.2)

Semi-parametric Nonlinear Mixed Effects Model fit

119



Model: cort ~ b1 + exp(b2 + d1 * I(group == "normal")) *

f(time - alogit(b3 + d2 * I(group == "normal")))

Data: cort.nordep.dat

AIC BIC logLik

438.1875 531.3631 -192.2045

Random effects:

Formula: list(b1 ~ 1, b2 ~ 1, b3 ~ 1)

Level: ID

Structure: General positive-definite stratified by as.factor(group)

Stratum: depression

StdDev Corr

b1.(Intercept) 0.4072866 b1.(I) b2

b2 0.3789050 -0.784

b3 0.3324878 0.086 -0.046

Stratum: normal

StdDev Corr

b1.(Intercept) 0.2448359 b1.(I) b2

b2 0.1626245 -0.522

b3 0.2661856 -0.032 -0.640

Within-group standard deviation: 0.4515871

Variance function:

Structure: Different standard deviations per stratum

Formula: ~ 1 | group

Parameter estimates:

depression normal

1 0.9358295

Fixed effects: list(b1 ~ group, d1 + d2 ~ 1)

Value Std.Error DF t-value p-value

b1.(Intercept) 1.907384 0.0956961 216 19.93168 <.0001

b1.group -0.272381 0.1310609 216 -2.07828 0.0389

d1 0.234996 0.0766247 216 3.06684 0.0024

d2 0.029918 0.0915166 216 0.32691 0.7441

Correlation:

b1.(I) b1.typ d1

b1.group -0.730

d1 0.000 -0.225

d2 0.000 -0.017 -0.428

GML estimate(s) of smoothing parameter(s): 0.0005858115

Equivalent Degrees of Freedom (DF): 8.889222

Converged after 4 iterations

120



The differences of 24-hour mean and amplitude are significant, while the difference of phase is not.
We refit without the d2 term.

> acth.nordep.fit.3 <- snm(horm~b1+exp(b2+d1*I(group=="normal"))*

f(time-alogit(b3)),

func=f(u)~list(periodic(u)),

data=acth.nordep.dat,

fixed=list(b1~group,d1~1),

random=pdStrat(b1+b2+b3~1,strata=~as.factor(group)),

weights=varIdent(form=~1|group),

control=list(prec.out=0.005,converg="PRSS"),

spar="m", start=c(2.8,-0.4,0), groups=~ID)

> summary(acth.nordep.fit.3)

Semi-parametric Nonlinear Mixed Effects Model fit

Model: acth ~ b1 + exp(b2 + d1 * I(group == "normal")) *

f(time - alogit(b3))

Data: acth.nordep.dat

AIC BIC logLik

417.8258 518.0793 -180.2195

Random effects:

Formula: list(b1 ~ 1, b2 ~ 1, b3 ~ 1)

Level: ID

Structure: General positive-definite stratified by as.factor(group)

Stratum: depression

StdDev Corr

b1.(Intercept) 0.4414536 b1.(I) b2

b2 0.3572042 -0.606

b3 0.3117688 0.212 0.238

Stratum: normal

StdDev Corr

b1.(Intercept) 0.3941497 b1.(I) b2

b2 0.3102877 -0.532

b3 0.1961919 0.067 0.113

Within-group standard deviation: 0.4178081

Variance function:

Structure: Different standard deviations per stratum

Formula: ~ 1 | group

Parameter estimates:

depression normal

1 0.9706348

Fixed effects: list(b1 ~ group, d1 ~ 1)

Value Std.Error DF t-value p-value

b1.(Intercept) 2.913696 0.1101288 222 26.45717 <.0001

121



b1.group -0.509698 0.1732330 222 -2.94227 0.0036

d1 0.340090 0.1283891 222 2.64890 0.0087

Correlation:

b1.(I) b1.group

b1.group -0.636

d1 0.000 -0.314

GML estimate(s) of smoothing parameter(s): 0.0002518025

Equivalent Degrees of Freedom (DF): 11.69337

Converged after 6 iterations

The fits are shown in Figures 59 and 60. The right panel of Figure 62 shows the estimated common
function and its 95% Bayesian confidence intervals. Data from two groups are pooled to estimate the
common function which has narrower confidence intervals. We conclude that the depressed subjects
have their mean cortisol level elevated and less profound circadian rhythm than normal subjects.

9 Computational Concerns

There is a trade-off between generality and speed. Our goal is to develop software for general spline
models. Thus all functions in ASSIST require at least O(n3) flops. For some special spline models such
as polynomial splines, software exist which only require O(n) flops. For example, the smooth.spline

function in S should be used to fit simple cubic spline models.

Fitting complicated smoothing spline models such as SS ANOVA models with multiple smoothing
parameters and SNMMs are computationally intensive. For large data sets, it may take hours and/or
exhaust memory. Certain tricks in S are helpful. For example, for kernels not available in our library,
it is more efficient to write functions in lower languages such as C or Fortran and then load them
into S. Vectorization is also important. For large data sets, one may re-set memory and object.size

arguments in the S function options() to increase memory and object size. Control parameters such
as the number of iterations and convergence criteria can be reset to save time.

Functions using iterative procedures such as nnr, snr and snm may fail to converge within the
prespecified number of iterations. In these cases convergence may be achieved with modifications of
some of the following arguments: initial values, convergence criteria, method for estimating smoothing
parameters and number of iterations.

Some reproducing kernels in ASSIST library have restricted domains (see Section 2). Thus it is
important to check whether the domain of a rk function coincides with the range of a covariate.
Otherwise, transformations should be made or the scale=T should be used. We recommend the first
option.

The nlme library (version 3.0 or later) is required for the ssr and nnr functions when a unknown
variance-covariance structure is involved, and for the slm, snr and snm functions. The nlme library
in the standard libraries, if available, may be loaded using

library(NLME,first=T)

The nlme library in a directory, say /home/nlme, may be loaded using

dyn.load("/home/nlme/NLME_l.o")

We have used the same methods and notations as in nlme to model correlation, heteroscedasticity
and random effects. Therefore users need to learn this part in nlme (Pinheiro and Bates 2000) when

122



specifying the correlation, weights and random options.

10 Future Research

To reduce the computational burden, we will add options for selecting a subset of representers among all
n representers ξi’s in the solution (4). Inferences on nonparametric functions are usually accomplished
using Bayesian confidence intervals. However, they do not provide pointwise coverage, nor a single
p-value. Hypothesis tests are only available for simple spline models (Liu and Wang 2004, Liu et al.
2004). Further research on model selection is also needed. One of our future task is to extend the
anova function to perform hypothesis tests for more complicated models, and to compare different
models.

Karcher and Wang (2002) proposed the SLM models for correlated non-Gaussian data. Thus we
can extend the slm function for non-Gaussian families.

References

Andrews, D. F. and Herzberg, A. M. (1985). Data: A Collection of Problems From Many Fields for
the Student and Research Worker, Springer:Brln:NY.

Arendt, J., Mirors, D. S. and Waterhouse, J. M. (1989). Biological rhythms in clinical practice, Wright,
London.

Aronszajn, N. (1950). Theory of reproducing kernels, Trans. Amer. Math. Soc. 68: 337–404.

Bates, D. M., Lindstrom, M. J., Wahba, G. and Yandell, B. S. (1987). GCVPACK: Routines for
generalized cross validation, CommStB 16: 263–297.

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions, Numer. Math. 31: 377–
403.

Dette, H., Munk, A. and Wagner, T. (1998). Estimating the variance in nonparametric regression -
what is a reasonable choice?, Journal of the Royal Statistical Society B 60: 751–764.

Donoho, D. L. and Johnston, I. M. (1994). Ideal spatial adaption by wavelet shrinkage, Biometrika
81: 425–456.

Earn, D. J. D., Rohani, P., Bolker, B. M. and Gernfell, B. T. (2000). A simple model for complex
dynamical transitions in epidemics, Science 287: 667–670.

Eubank, R. (1988). Spline Smoothing and Nonparametric Regression, New York: Dekker.

Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in
nonlinear regression, Biometrika 73: 625–633.

Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Models:
A Roughness Penalty Approach, London: Chapman and Hall.

Grizzle, J. E. and Allen, D. M. (1969). Analysis of growth and dose response curves, Biometrics
25: 357–381.

123



Gu, C. (1989). RKPACK and its applications: Fitting smoothing spline models, Proceedings of the
Statistical Computing Section, ASA: pp. 42–51.

Gu, C. (1990). Adaptive spline smoothing in non-Gaussian regression models, Journal of the American
Statistical Association 85: 801–807.

Gu, C. (1992). Cross-validating non Gaussian data, Journal of Computational and Graphical Statistics
2: 169–179.

Gu, C. (2002). Smoothing Spline ANOVA Models, Springer-Verlag, New York.

Gu, C. and Wahba, G. (1991). Minimizing GCV/GML scores with multiple smoothing parameters
via the Newton method, SIAM J. Sci. Stat. Comput. 12: 383–398.

Gu, C. and Wahba, G. (1993a). Semiparametric ANOVA with tensor product thin plate spline, Journal
of the Royal Statistical Society B 55: 353–368.

Gu, C. and Wahba, G. (1993b). Smoothing spline ANOVA with component-wise Bayesian confidence
intervals, Journal of Computational and Graphical Statistics 2: 97–117.

Hall, P., Kay, J. W. and Titterington, D. M. (1990). Asymptotically optimal difference-based estima-
tion of variance in nonparametric regression, Biometrika 77: 521–528.

Hall, P., Reimann, J. and Rice, J. (2001). Nonparametric estimation of a periodic function, Biometrika
87: 545–557.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models, Chapman and Hall.

Hastie, T. and Tibshirani, R. (1993). Varying coefficient model, Journal of the Royal Statistical Society
B 55: 757–796.

Heckman, N. and Ramsay, J. O. (2000). Penalized regression with model-based penalties, Canadian
Journal of Statistics 28: 241–258.

Karcher, P. and Wang, Y. (2002). Generalized nonparametric mixed effects models, Journal of Com-
putational and Graphical Statistics 10: 641–655.

Ke, C. and Wang, Y. (2001). Semi-parametric nonlinear mixed effects models and their applications
(with discussion), Journal of the American Statistical Association 96: 1272–1298.

Ke, C. and Wang, Y. (2002). Nonparametric nonlinear regression models, Technical Report # 385,
Department of Statistics and Applied Probability, University of California - Santa Barbara.

Kitagawa, G. and Gersch, W. (1984). A smoothness priors-state space modeling of time series with
trend and seasonality, Journal of the American Statistical Association 79: 378–389.

Klein, R., Klein, B. E. K., Moss, S. E., Davis, M. D. and DeMets, D. L. (1988). Glycosylated
hemoglobin predicts the incidence and progression of diabetic retinopathy, Journal of the Amer-
ican Medical Association 260: 2864–2871.

124



Kronfol, Z., Nair, M., Zhang, Q., Hill, E. and Brown, M. (1997). Circadian immune measures in
healthy volunteers: Relationship to hypothalamic-pituitary-adrenal axis hormones and sympa-
thetic neurotransmitters, Psychosomatic Medicine 59: 42–50.

Lawton, W. H., Sylvestre, E. A. and Maggio, M. S. (1972). Self-modeling nonlinear regression, Tech-
nometrics 13: 513–532.

Liu, A. and Wang, Y. (2004). Hypothesis testing in smoothing spline models, Journal of Statistical
Computation and Simulation.

Liu, A., Meiring, W. and Wang, Y. (2004). Testing generalized linear models using smoothing spline
methods, Statistica Sinica 14: 000–000.

Nychka, D. (1988). Bayesian confidence intervals for smoothing splines, Journal of the American
Statistical Association 83: 1134–1143.

Nychka, D. and Ruppert, D. (1995). A nonparametric transformation applied to both sides of a
regression model, Journal of the Royal Statistical Society B 57: 519–532.

Opsomer, J., Wang, Y. and Yang, Y. (2001). Nonparametric regression with correlated errors, Statis-
tical Science 16: 134–153.

O’Sullivan, F. (1990). Convergence characteristics of methods of regularization estimators for nonlinear
operator equations, SIAM Journal on Numerical Analysis 27: 1635–1649.

O’Sullivan, F. (1991). Sensitivity analysis for regularized estimation in some system identification
problems, SIAM J. Sci. Stat. Comput. 12: 1266–1283.

O’Sullivan, F. and Wahba, G. (1985). A cross validated Bayesian retrieval algorithm for non-linear
remote sensing, J. Comput. Phys. 59: 441–455.

Pinheiro, J. and Bates, D. M. (2000). Mixed-effects Models in S and S-plus, Springer, New York.

Potvin, C., Lechowicz, M. J. and Tardif, S. (1990). The statistical analysis of ecophysiological response
curves obtained from experiments involving repeated measures, Ecology 71: 1389–1400.

Ramsay, J. O. (1998). Estimating smooth monotone functions, Journal of the Royal Statistical Society
B 60: 365–375.

Ramsay, J. O. and Li, X. (1998). Curve registration, Journal of the Royal Statistical Society B
60: 351–363.

Ramsay, J. O. and Silverman, B. W. (1997). Functional Data Analysis, Springer, New York.

Refinetti, R. (1993). Laboratory instrumentation and computing: Comparison of six methods for the
determination of the period of circadian rhythms, Physiology and Behavior 54: 869–875.

Rice, J. A. (1984). Bandwidth choice for nonparametric regression, Annals of Statistics 12: 1215–1230.

Roosen, C. and Hastie, T. (1994). Automatic smoothing spline projection pursuit, Journal of Com-
putational and Graphical Statistics 3: 235–248.

125



Schaffer, W. and Kot, M. (1985). Nearly one dimensional dynamics in an epidemic, Journal of
Theoretical Biology 112: 403–427.

Self, S. G. and Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators and like-
lihood ratio tests under nonstandard conditions, Journal of the American Statistical Association
82: 605–610.

Simonoff, J. (1996). Smoothing Methods in Statistics, Springer-Verlag, New York.

Venables, W. N. and Ripley, B. D. (1998). Modern Applied Statistics With S-Plus, Springer, New
York.

Wahba, G. (1978). Improper priors, spline smoothing, and the problem of guarding against model
errors in regression, Journal of the Royal Statistical Society B 40: 364–372.

Wahba, G. (1981). Spline interpolation and smoothing on the sphere, SIAM J. Sci. Stat. Comput.
2: 5–16.

Wahba, G. (1982). Erratum: Spline interpolation and smoothing on the sphere, SIAM J. Sci. Stat.
Comput. 3: 385–386.

Wahba, G. (1983). Bayesian confidence intervals for the cross-validated smoothing spline, Journal of
the Royal Statistical Society B 45: 133–150.

Wahba, G. (1987). Three topics in ill posed inverse problems, Inverse and Ill-Posed Problems, M.
Engl and G. Groetsch, eds., Academic Press.

Wahba, G. (1990). Spline Models for Observational Data, SIAM, Philadelphia. CBMS-NSF Regional
Conference Series in Applied Mathematics, Vol. 59.

Wahba, G. and Luo, Z. (1996). Smoothing spline ANOVA fits for vary large, nearly regular data sets,
with application to historical global climate data, Festschrift in Honor of Ted Rivlin, C. Micchelli,
Ed.

Wahba, G. and Wang, Y. (1993). Behavior near zero of the distribution of GCV smoothing parameter
estimates for splines, Statistics and Probability Letters 25: 105–111.

Wahba, G., Wang, Y., Gu, C., Klein, R. and Klein, B. (1995). Smoothing spline ANOVA for exponen-
tial families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy,
Annals of Statistics 23: 1865–1895.

Wang, Y. (1997). GRKPACK: fitting smoothing spline analysis of variance models to data from
exponential families, Communications in Statistics: Simulation and Computation 26: 765–782.

Wang, Y. (1998a). Mixed-effects smoothing spline ANOVA, Journal of the Royal Statistical Society B
60: 159–174.

Wang, Y. (1998b). Smoothing spline models with correlated random errors, Journal of the American
Statistical Association 93: 341–348.

126



Wang, Y. and Brown, M. B. (1996). A flexible model for human circadian rhythms, Biometrics
52: 588–596.

Wang, Y. and Wahba, G. (1995). Bootstrap confidence intervals for smoothing splines and their
comparison to Bayesian confidence intervals, J. Statist. Comput. Simul. 51: 263–279.

Wang, Y. and Wahba, G. (1998). Discussion of ”Smoothing Spline Models for the Analysis of Nested
and Crossed Samples of Curves” by Brumback and Rice, Journal of the American Statistical
Association 93: 976–980.

Wang, Y., Guo, W. and Brown, M. B. (2000). Spline smoothing for bivariate data with applications
to association between hormones, Statistica Sinica 10: 377–397.

Wang, Y., Wahba, G., Chappell, R. and Gu, C. (1995). Simulation studies of smoothing parameter
estimates and Bayesian confidence intervals in Bernoulli SS ANOVA models, Communications in
Statistics: Simulation and Computation 24: 1037–1059.

Wang, Y., Wahba, G., Gu, C., Klein, R. and Klein, B. (1997). Using smoothing spline ANOVA
to examine the relation of risk factors to the incidence and progression of diabetic retinopathy,
Statistics in Medicine 16: 1357–1376.

Yorke, J. and London, W. (1973). Recurrent outbreaks of measles, chickenpox and mumps, American
Journal of Epidemiology 98: 453–482.

127


